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Abstract 

Medical imaging plays a vital part in modern-day healthcare practice, enabling diagnosis, 

treatment planning, and follow-up in the patient. Among various imaging modalities, X-ray 

imaging remains one of the most common due to its effectiveness, widespread availability, and 

diagnostic relevance. However, the continuous increase in the volume and resolution of medical 

images, especially X-rays, brings data storage, transmission, and processing challenges of 

utmost importance. These challenges normally lead to costly and complex management issues, 

especially in large healthcare systems.  

To address these challenges, both traditional compression techniques and more recent machine 

learning-based techniques have been explored. Traditional techniques, such as JPEG and PNG, 

offer basic compression but are not tailored to the specific needs of medical imaging since they 

are unable to preserve diagnostic quality or exploit the unique structural patterns in medical 

images. Yet, deep learning techniques, particularly autoencoders, convolutional neural 

networks (CNNs), and Variational autoencoders (VAEs), have demonstrated excellent potential 

in improving both image quality and compression ratios, surmounting the limitations of 

conventional techniques.  

This research investigates the potential of deep learning-based image compression models—

like Autoencoders (AE), Deep Convolutional Autoencoders (DCAE), CNNs, and VAEs—for 

achieving better medical X-ray image compression. It also incorporates machine learning 

algorithms such as Principal Component Analysis (PCA) and K-means clustering for the 

optimization of image storage and transmission. Additionally, this study introduces the Medical 

X-ray Imaging Dataset (MXID), a high-quality dataset of X-ray images from AOUINET 

Hospital in Tebessa, Algeria, to facilitate various medical imaging tasks, including 

compression, classification, and machine learning applications. The study's findings 

demonstrate that deep learning-based models, specifically DCAEs, outperform alternative 

compression techniques in terms of image compression efficiency and quality retention yielding 

a PSNR of 46,78 dB. 

The ultimate objective of this research in the long term is to contribute to the development of 

efficient, high-quality medical image compression techniques that will be able to improve the 

handling of healthcare data, thereby facilitating more effective healthcare delivery through 

better storage and transmission. 
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Résumé 

L'imagerie médicale joue un rôle essentiel dans la pratique moderne des soins de santé, 

permettant le diagnostic, la planification du traitement et le suivi du patient. Parmi les 

différentes modalités d'imagerie, la radiographie reste l'une des plus courantes en raison de son 

efficacité, de sa grande disponibilité et de sa pertinence diagnostique. Cependant, 

l'augmentation continue du volume et de la résolution des images médicales, en particulier des 

rayons X, pose des problèmes de stockage, de transmission et de traitement des données de la 

plus haute importance. Ces défis conduisent généralement à des problèmes de gestion coûteux 

et complexes, en particulier dans les grands systèmes de soins de santé.  

Pour relever ces défis, les techniques de compression traditionnelles et les techniques plus 

récentes basées sur l'apprentissage automatique ont été explorées. Les techniques 

traditionnelles, telles que JPEG et PNG, offrent une compression de base mais ne sont pas 

adaptées aux besoins spécifiques de l'imagerie médicale, car elles sont incapables de préserver 

la qualité du diagnostic ou d'exploiter les modèles structurels uniques des images médicales. 

Cependant, les techniques d'apprentissage profond, en particulier les autoencodeurs, les réseaux 

neuronaux convolutifs (CNN) et les autoencodeurs variationnels (VAE), ont démontré un 

excellent potentiel pour améliorer à la fois la qualité de l'image et les taux de compression, 

surmontant ainsi les limites des techniques conventionnelles. 

Cette recherche étudie le potentiel des modèles de compression d'images basés sur 

l'apprentissage profond, tels que les autoencodeurs (AE), les autoencodeurs convolutionnels 

profonds (DCAE), les CNN et les VAE, afin d'obtenir une meilleure compression des images 

radiologiques médicales. Elle intègre également des algorithmes d'apprentissage automatique 

tels que l'analyse en composantes principales (ACP) et le regroupement K-means pour 

l'optimisation du stockage et de la transmission des images. En outre, cette étude présente le 

Medical X-ray Imaging Dataset (MXID), un ensemble de données de bonne qualité d'images 

radiographiques provenant de l'hôpital AOUINET de Tebessa, en Algérie, afin de faciliter 

diverses tâches d'imagerie médicale, notamment la compression, la classification et les 

applications d'apprentissage automatique. Les résultats de l’étude démontrent que les modèles 

basés sur l’apprentissage profond, en particulier les DCE, surpassent les autres techniques de 

compression en termes d’efficacité de compression des images et de rétention de la qualité, ce 

qui donne un PSNR de 46,78 dB. 



 

 

L'objectif ultime de cette recherche à long terme est de contribuer au développement de 

techniques de compression d'images médicales efficaces et de haute qualité qui seront en 

mesure d'améliorer le traitement des données de soins de santé, facilitant ainsi une prestation 

de soins de santé plus efficace grâce à un meilleur stockage et à une meilleure transmission. 

Les mots clé:  Image médicale à rayons X, apprentissage profond, apprentissage automatique, 

compression d'image, ensemble de données d'imagerie médicale à rayons X (MXID).



 

 

 

 الملخص 

 

يلعب التصوير الطبي دورًا حيوياً في ممارسة الرعاية الصحية في العصر الحديث، حيث يتيح التشخيص والتخطيط للعلاج ومتابعة 

التصوير المختلفة، يظل التصوير بالأشعة السينية أحد أكثرها شيوعًا نظرًا لفعاليته وتوافره على نطاق واسع المريض. من بين طرائق 

وأهميته التشخيصية. ومع ذلك، فإن الزيادة المستمرة في حجم ودقة الصور الطبية، وخاصةً الأشعة السينية، تجلب تحديات تخزين 

ى. وعادةً ما تؤدي هذه التحديات إلى مشاكل إدارية مكلفة ومعقدة، خاصةً في أنظمة الرعاية البيانات ونقلها ومعالجتها ذات أهمية قصو

  .الصحية الكبيرة

قليدية، ولمواجهة هذه التحديات، تم استكشاف كل من تقنيات الضغط التقليدية والتقنيات الحديثة القائمة على التعلم الآلي. وتوفر التقنيات الت

أساسياً ولكنها ليست مصممة خصيصًا لتلبية الاحتياجات المحددة للتصوير الطبي لأنها غير قادرة على  ، ضغطًاPNG و JPEG مثل

الحفاظ على جودة التشخيص أو استغلال الأنماط الهيكلية الفريدة في الصور الطبية. ومع ذلك، أظهرت تقنيات التعلمّ العميق، ولا سيما 

، إمكانات ممتازة في تحسين جودة (VAEs) والتشفير التلقائي المتغير (CNNs) ية التلافيفيةتقنيات التشفير التلقائي والشبكات العصب

 .الصورة ونسب الضغط، متجاوزةً بذلك قيود التقنيات التقليدية

التلقائي ( والترميز AEمثل برامج الترميز التلقائي ) -يبحث هذا البحث في إمكانات نماذج ضغط الصور القائمة على التعلمّ العميق 

لتحقيق ضغط أفضل لصور الأشعة السينية  - VAEs( ونماذج CNNs( ونماذج الشبكات المترابطة الشبكية )DCAEالتلافيفي العميق )

لتحسين تخزين  K-means( وتجميع PCAالطبية. كما أنها تتضمن أيضًا خوارزميات التعلم الآلي مثل تحليل المكونات الرئيسية )

(، وهي مجموعة بيانات MXIDافة إلى ذلك، تقدم هذه الدراسة مجموعة بيانات التصوير الطبي بالأشعة السينية )الصور ونقلها. بالإض

في تبسة بالجزائر، لتسهيل مهام التصوير الطبي المختلفة، بما في ذلك الضغط العوينات عالية الجودة لصور الأشعة السينية من مستشفى 

، تتفوق على تقنيات DCAEsوضح نتائج الدراسة أن النماذج القائمة على التعلم العميق، وتحديداً ت والتصنيف وتطبيقات التعلم الآلي.

 .ديسيبل 46،78قدره  PSNRالضغط البديلة من حيث كفاءة ضغط الصور والاحتفاظ بالجودة مما يؤدي إلى 

الصور الطبية الفعالة وعالية الجودة التي ستكون  الهدف النهائي من هذا البحث على المدى الطويل هو المساهمة في تطوير تقنيات ضغط

قادرة على تحسين التعامل مع بيانات الرعاية الصحية، وبالتالي تسهيل تقديم الرعاية الصحية بشكل أكثر فعالية من خلال تحسين التخزين 

 والنقل.

 

التعلم العميق، التعلم الآلي، ضغط الصور، مجموعة بيانات  صورة طبية بالأشعة السينية، التعلم العميق،المفتاحية: الكلمات 

(.MXIDالتصوير الطبي بالأشعة السينية )
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GENERAL INTRODUCTION 

ith technological advancements, the amount of visual data created in nations 

throughout the world has skyrocketed across a variety of industries, including 

communication, entertainment, scientific study, and even healthcare. However, this has resulted 

in further challenges with image processing, transmission, and storage. Image compression is a 

key technique for addressing these challenges, which makes it useful in a variety of industries. 

Compression methods are used to minimize image file size while preserving key features. 

High-resolution X-rays, MRI’s, CT scans images aid the medical field with their precise 

diagnosis and treatment formulation. Unfortunately, the sheer size of the datasets poses a 

significant logistical and computational problem regarding image management. In medical 

analysis, real-time image processing is crucial. Therefore, image avoidance preservation 

techniques, image compression, should be employed to address this problem. Image avoidance 

preservation allows for the safeguard of critical diagnostic details in aid of seamless network 

data transfer, unrivaled storage, and boost processing speed. 

1.1. PROBLEMATIC 

In today's digital era of healthcare, medical imaging has become an integral part of diagnosis 

work. Among the many imaging modalities, X-ray Imaging is one of the most accepted due to 

its cost, accessibility, and diagnostic utility. However, the exponential growth in the number 

and resolution of X-ray images, and efficient image transmission, especially in telemedicine 

systems has introduced significant challenges in terms of efficient image transmission, 

bandwidth consumption, and data storage. To solve these problems, several traditional 

compression methods such as JPEG, JPEG2000, PNG, and TIFF have been used according to 

their simplicity of implementation; however, these methods have limitations due to their use 

with medical images, and non-context-aware techniques using the same compression rules for 

all images regardless of structural or semantic content. By contrast, deep learning-based 

approaches—i.e., those employing autoencoders and convolutional neural networks (CNNs)—

can learn task-specific optimal representations of medical images. Such models can learn to 

compress images adaptively by preserving diagnostic key features while reducing storage size 

drastically. Their use in the medical imaging community is an ongoing area of research, with 

performance, generalizability, and clinical acceptability issues. This thesis addresses this gap 
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by designing, training, and evaluating deep convolutional autoencoder models specifically for 

medical applications. 

1.2. MOTIVATION  

The purpose of this work is to create image compression technologies that are specifically 

designed for usage in the medical industry. Conventional algorithms such as JPEG and 

JPEG2000 are usually unsuitable for more difficult medical imaging jobs because medical 

images contain complex patterns and tiny features that help in diagnosis. The goal of this effort 

is to develop novel compression algorithms that use machine learning to improve compression 

efficiency and diagnostic feature preservation. 

1.3. OBJECTIVES 

The fundamental goal of this research is to investigate and create imaging approaches, 

particularly in medicine, that use machine learning for picture compression. More precisely, 

the research aims to achieve the following objectives: 

• Determine if autoencoder or CNN-based algorithms are suitable for compressing 

medical photos. 

• Evaluate the effectiveness of the methods proposed by looking at the compression 

ratio, the quality of the images, and the speed of the calculations. 

• Try to find the practical uses and advantages of using machine learning techniques for 

compression in medical imaging. 

1.4. SCOPE 

      This study focuses on exploring and assessing machine learning strategies for image 

compression in the field of medical imaging. It pertains to the creation of new compression 

methods based on autoencoders and CNNs, as well as experiments with publicly available 

medical images. The study includes grayscale medical images where the utmost image fidelity 

in integration with the existing medical imaging methods is sought. 

1.5. OVERVIEW OF THE THESIS 

The thesis is primarily on image compression, with a detailed survey of the existing techniques. 

Some of the key highlights of the research work included are: 



 

 

1. Detailed review and classification of traditional and modern image compression methods. 

2. Implementation and comparison of machine learning and deep learning-based compression 

models. 

3. Construction and contribution of a new high-quality X-ray dataset (MXID) for medical 

imaging research. 

4. Comparative study of various models with various performance measures across various 

datasets. 

1.6. Organization of the thesis  

Chapter One is the introductory chapter presents a detailed review of existing image 

compression techniques, both traditional and recent, and it provides background to the 

significance of image compression in medical imaging. 

Chapter Two includes the machine learning and deep learning methods, and discussion 

regarding the strengths and weaknesses of each technique. 

The Third Chapter is focused on machine learning techniques for compressing medical 

images. It presents a state-of-the-art overview of unsupervised learning approaches—such as 

Principal Component Analysis (PCA), K-means clustering, and various types of autoencoders 

(AE, DCAE, VAE)—and analyzes their applicability and performance when processing 

medical image data. 

The Fourth Chapter discusses the datasets used in the study, including how the Medical X-

ray Imaging Dataset (MXID) was created, its characteristics, and its importance. It also includes 

a comparison to existing public medical datasets. 

Chapter Five is where methodology and experimental setup enter the scene, discussing the 

usage of various compression models (PCA, K-means, AE, DCAE, CNN, and VAE) and how 

the performance is measured, and discusses the experimental results, with a detailed analysis 

of the findings. The performance of all the models is compared, and the contributions of the 

study are evaluated in relation to prior work. 

The General Conclusion and Perspectives summarizes the key findings of the thesis, 

highlights contributions to medical image compression research, and offers guidance on how 

future research can be enhanced to further aid compression techniques at the cost of diagnostic 

image quality. 
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2.1 Introduction 

he fast-forward development of technologies has enabled the multi-production, 

storing, and transmission of Visual Data in the multimedia, communication, 

healthcare, and scientific fields. The sources of High-Resolution photographs such as digital 

cameras, medical imaging and satellites have further increased the need for data 

management. Image compression caters to these problems by serving as a principal tool to 

maximize efficiency in storage, transmission, and processing. 

Simply put, image compression is the action of shrinking pictures to a small file size without 

sacrificing an acceptable level of visual integrity to their intended use. Compression 

operations are capable of achieving big reductions in storage expense, bandwidth 

utilization, and processing time by locating and removing unnecessary or redundant data. 

Therefore, compression operations improve the handling of data, enable quick processing 

of pictures, and improve real-time processing capacity. 

The primary objectives of image compression can be summarized as follows: 

• Reducing Storage Requirements: Storage units have the capacity to hold more 

information without a hike in cost using compressed image data. 

• Reducing Bandwidth Use: Compressed images take less bandwidth, thus can be 

transferred quicker and with less network congestion. 

• Improving Transmission Speed: Compression makes it possible for visual 

information to be sent fast via various communication media, such as satellite 

communication, wireless connectivity, and web platforms. 

• Maintenance of Visual Integrity: Maintaining the integrity of the image is a core 

function of compression algorithms, ensuring proper visual information for correct 

interpretation is preserved. 

• Improving Real-Time Processing: Real-time image analysis programs like video 

conferencing, surveillance, and medical imaging are enabled by lightweight 

compression. 

As image compression has evolved, it has benefited from advances in information theory, 

signal processing, and computer techniques. Through significant innovation, the industry 

has consistently increased picture compression efficiency, beginning with foundational 

approaches such as Huffman coding, run-length encoding (RLE) and proceeding to more 

contemporary standards such as JPEG2000, JPEG and High-Efficiency Video Coding. 
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2.2 Standard Image Formats 

Image formats specify how pixels are saved, compressed, and displayed. Different formats 

are appropriate for a variety of uses, such as medical imaging, online browsing, and printing. 

The following are some of the most popular standard picture formats presented in Table 2-1: 

Table 2-1 Image File Formats and Its Extension 

 
Image Format 

Image 

Extension 
Application Benefits Limitations 

Lossy 

Image 

Formats 

JPEG (Joint 

Photographic 

Experts Group) 

.jpg, .jpeg 

Web images, 

digital 

artwork, 

screenshots 

High quality, 

supports 

transparency 

Larger file 

size than 

JPEG 

WEBP (Web 

Picture Format 

by Google) 

.webp 
Photography, 

web images 

High 

compression, 

small file 

size 

Loss of 

quality, 

artifacts at 

high 

compression 

HEIF (High-

Efficiency 

Image Format) 

.heif, heif 

Printing, 

professional 

photography, 

medical 

imaging 

High quality, 

multiple 

compression 

options 

Large file 

size 

Lossless 

Image 

Formats 

GIF (Graphics 

Interchange 

Format) 

.gif 

Simple 

animations, 

web graphics 

Supports 

animations, 

small file 

size 

Limited to 

256 colors 

PNG (Portable 

Network 

Graphics) 

.png 

Windows 

applications, 

icon design 

High-quality 

images, 

simple 

format 

Very large 

file size 

Tiff (Tagged 

Image File 

Format) 

.tif, .tiff 
Smartphone 

photos, 

High 

efficiency, 

Limited 

software 

compatibility 
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modern 

image storage 

better quality 

than JPEG 

Specialized 

Formats 

DICOM 

(Digital Imaging 

and 

Communications 

in Medicine) 

.dcm 

Medical 

imaging (X-

rays, CT 

scans, MRI) 

Stores patient 

data with 

images 

Requires 

specialized 

software 

RAW 

(Unprocessed 

Camera Image 

Format) 

Canon → 

.cr2, .cr3  

Nikon → 

.nef  

Sony → 

.arw  

Adobe 

RAW → 

.dng 

Professional 

photography, 

post-

processing 

Maximum 

detail for 

editing 

Very large 

file size, 

requires 

conversion 

SVG (Scalable 

Vector Graphics, 

XML-based 

format) 

.svg 

Logos, icons, 

scalable 

graphics 

Infinite 

scalability, 

small file 

size 

Not suitable 

for complex 

images like 

photos 

 

2.3 Image Compression  

In the Image compression task, the input image undergoes different steps to compress and 

reconstruct it. These steps start from input image to decompressed image for reducing its 

size while maintaining the quality. Figure 2-1 represent the process of the image 

compression. 

 

Figure 2-1 A General Compression Scheme 
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Following the steps in detail:  

2.3.1 Input Image (Source File): 

Starting from the input image, which refers to the original uncompressed image consisting 

of pixels that represents the visual information, stored in digital formats in wide color space 

(RGB or Grayscale). 

2.3.2  Encoder (Compression): 

The encoder serves to reduce the redundancies and irrelevant information by using several 

compression-based techniques (traditional or machine learning). 

2.3.3  Encoded Image (Compressed File): 

After the compression process, the image is compressed and represented in compact format 

with a smaller file size containing essential information with a slight quality reduction. 

2.3.4  Decoder (Decompression): 

In the decompression step, the decoder is responsible of compressed image reconstruction 

by reversing the compression process based on compression technique used either lossy or 

lossless. 

2.3.5 Output Image (Decompressed File): 

The reconstructed image is obtained after decoding its compressed format back into its 

approximate format; its quality depends on the applied compression technique.  

2.4 Compression Techniques 

The importance of image compression techniques is evident in various applications, including 

image transmission, storage, and processing. To tackle the challenge of reducing image size 

while preserving image quality, several image compression techniques have been developed. 

Some of the commonly utilized techniques are: 

2.4.1 Image Compression Based Traditional Techniques 

2.4.1.1 Lossy Compression  

Lossy compression is a method of data compression that minimizes file sizes by approximating 

certain information, resulting in a reduction in fidelity but also achieving higher compression 

ratios. Lossy compression eliminates unnecessary data by reducing the file size and quality 

compared to the original one and it is reversible compression because after decompression the 
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original data could be recovered perfectly. Lossy compression entails relinquishing some 

degree of data integrity for the sake of enhancing efficiency, is typically suggested for situations 

in which reducing storage or transmission requirements takes precedence over maintaining the 

precise particulars of the original data. This is particularly pertinent in domains such as 

multimedia streaming, digital photography, and internet communication. 

2.4.1.1.1 Fractal Coding 

Hutchinson [1] and Barnsley [2] introduced Fractal coding, which is a lossy compression 

technique, it is a technique that employs the intricate mathematical principles of fractal 

geometry, offering an alternative solution for image compression. This technique locates self-

similarity in images and reduces the amount of data desired for image reproduction [3]. Fractal 

image coding involves breaking down an image into affine transformations, each range block 

is encoded by selecting the domain block with the best match from the domain pool [4]. 

2.4.1.1.2 Transform Coding (DCT, DWT) 

Transform coding is based on the principle that the pixels in an image exhibit a specific level 

of correlation with their adjacent pixels [5]. It is a crucial element of various image and video 

compression algorithms, including MPEG and JPEG. This technique involves converting data 

from the spatial domain, which consists of raw pixel values, to the frequency domain using 

mathematical operations. The Discrete Wavelet Transform (DWT) and the Discrete Cosine 

Transform (DCT) are commonly used methods for this type of transformation.  

2.4.1.1.2.1 Discrete Cosine Transform (DCT) Coding  

Discrete Cosine Transform (DCT) coding compresses an image or video into a smaller size 

while retaining significant details; it is a two-dimensional mathematical transform that converts 

real-valued input data from the spatial domain into the frequency domain [6]. It works by 

dividing the image into small blocks and determining how much of each color shade shows at 

various "brightness levels". This allows to the image to be saved more effectively, similar to 

the code that recreates the picture, resulting in reduced file sizes in formats such as JPEG and 

MPEG.  

2.4.1.1.2.2 Discrete Wavelet Transform (DWT) Coding 

Discrete Wavelet Transform (DWT) is a widely used coding technique in the digital image 

processing. The technique can be utilized for transforming and compressing image, as well as 

for steganography [7]. Wavelet transformations are built using fundamental, unalterable 
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components that serve a variety of purposes. These components are derived from a 

predetermined function, known as the mother wavelet, which remains constant [8].  

2.4.1.1.3 JPEG Standards 

The Joint Photographic Experts Group [9]  developed the JPEG standard in 1992, the latter is a 

lossy image compression method based on the Discrete Cosine Transform to reduce image size 

while maintaining an acceptable level of quality. The JPEG standard provides three lossy 

encoding modes: progressive, sequential, and hierarchical, along with a single lossless encoding 

technique [10]. 

2.4.1.1.4 Jpeg-2000 Standards 

Likewise, the Joint Photographic Experts Group (JPEG) developed JPEG 2000 and published 

it as an ISO standard in 2000. Unlike JPEG, which divides images into blocks measuring 8x8 

pixels and compresses them, JPEG 2000 compresses each horizontal line into a signal that is 

then transformed into wavelets [11], achieving superior image quality and compression 

efficiency. Its versatility in handling various image types, including continuous-tone, bi-level, 

grayscale, and multi-component images, as well as its resilience to errors, which make it 

suitable for a wide range of applications. Although it has several advantages, its adoption has 

been limited by factors such as slower processing times and compatibility issues with current 

systems. 

2.4.1.1.5 Vector Quantization (VQ) 

The Vector quantization (VQ) is a compression technique that has been used in many different 

processing techniques such as image compression. It includes three different parts: code-book 

generation, encoding and decoding, In the process of code-book generation, images of interest 

are initially segmented into k-dimensional training vectors [12]. Then in the partitioning into 

regions, each of them is associated with one of the vectors. In the encoding or the quantization, 

each vector is assigned the closest vectors from the codebook. In the decoding procedure, using 

the same codebook, a codeword represents the original data vector from its corresponding 

vector for image reconstruction [13]. 

2.4.1.1.6 Set Partitioning in Hierarchical Trees (SPIHT) 

The Set Partitioning in Hierarchical Trees (SPIHT) algorithm, initially proposed by Amir Said 

and William A. Pearlman [14] in 1996; based wavelet-based image compression, developed for 

image compression technology. SPIHT efficiently encodes images by dividing them into 

different levels of resolution based on their significance, the most significant sub-blocks are 
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then encoded and transmitted first. This hierarchical approach allows SPIHT to achieve 

efficient compression ratios and preserving image quality. With its ability to balance 

compression efficiency and computational complexity, this algorithm takes advantage as a 

popular choice for different applications, such as satellite imaging, and medical imaging.  

2.4.1.2 Lossless Compression 

Lossless compression technique reduces image file size with image quality preservation and 

without loss of details and original information. This method ensures the perfect image 

reconstruction from compressed file which requires high image fidelity and quality 

reconstruction, making them ideal for different applications especially medical one. Following 

section discusses the lossless techniques from Run-Length Encoding (RLE) to Arithmetic 

coding. 

2.4.1.2.1 RUN-LENGTH ENCODING (RLE) 

The Run-length encoding (RLE) is lossless compression technique; it compresses data by 

recognizing and decreasing runs, which are sequences of successive occurrences of the same 

alphabet or character. As a result, it assists to minimize the overall size of repeated symbol in 

the runs. In addition, the length of each run and the character in it should be recorded [15]. The 

fundamental concept of this method is to exchange consecutive repetitions of a symbol with a 

single instance of the symbol, accompanied by the count of its appearances [16]. 

2.4.1.2.2 HUFFMAN CODING (Entropy Coding) 

Huffman coding is proposed in 1952 by Huffman, D [17], this technique uses variable-length 

codes to represent the input characters or symbols in order to evaluate the probability of the 

source characters; the less common character has a larger code than the most common one. To 

evaluate the occurrence rate of each symbol, Huffman coding commences by examining the 

input data for the frequency analysis stage. The subsequent step entails constructing the 

Huffman tree based on the frequency analysis, wherein each leaf node signifies a symbol. In 

the course of constructing the tree, less frequent symbols are allotted longer codewords, while 

more frequent symbols are allocated shorter codewords. The codewords are then assigned to 

their respective positions in the tree, guaranteeing that no codeword serves as a prefix to another 

codeword, thereby ensuring that the encoded data can be uniquely decoded. The input data are 

symbolically encoded using the generated Huffman tree and code words. The same Huffman 

tree is utilized in the decoding phase of the compressed data. The encoded data are traversed 

bit by bit, adhering to the path in the Huffman tree until a leaf node is reached. The symbol 
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represented by the leaf node is then output, and the process continues until all encoded data are 

decoded. Although it is a useful technique, it may not be as effective as more advanced 

compression methods such as run-length encoding or arithmetic coding, which consider symbol 

relationships in order to achieve greater compression ratios. 

2.4.1.2.3 Lempel–Ziv–Welch (LZW) Compression 

The compression system of Lempel–Ziv–Welch (LZW) [18], This compression starts with the 

dictionary creation that contains all potential byte or character sequences. Then it operates by 

sequentially reading input data and constructing a dictionary containing byte sequences 

identified in the input stream. As it processes the data, it searches for the longest sequence in 

the dictionary that is identical to the current input and produces the index of that sequence in 

the dictionary. When a novel sequence is detected but not yet present in the dictionary, it is 

immediately added to it, and its corresponding index is assigned. The dictionary grows in size 

as additional sequences are encountered. The compressed data is composed of a succession of 

indices that direct attention to entries in the dictionary. Finally, during decompression, the 

compressed data is scanned, and the corresponding sequences in the dictionary are retrieved. 

As each sequence is retrieved, it is incorporated into the dictionary for future reference. 

2.4.1.2.4 Shannon–Fano Coding 

The Shannon-Fano algorithm, developed by Claude Shannon and Robert Fano in 1949, is a 

lossless compression technique [19]. It uses variable-length code words, where characters that 

are more frequent are assigned shorter codes, and less frequent characters are represented by 

longer codes [20]. This technique starts with building probability table, then Organize the table 

by frequency, with the highest frequency character appearing at the top, after that is splitting 

the table into two sets that the combined probability of both groups is as close as possible, 

maintaining the original meaning and context. Next step is assigning the value of “1” in the 

right sets and the “0” in the left sets, and finally undertaking the two previous steps until 

successfully dividing all the symbols in a separated group. 

2.4.1.2.5 Arithmetic Coding 

Arithmetic coding is a type of data compression technique that utilizes entropic coding and is 

employed in lossless data compression. This method typically employs a set number of bits per 

character, similar to the ASCII code. By converting a string to arithmetic encoding, frequently 

used characters are assigned fewer bits, while fewer common characters are assigned more bits, 

thus reducing the overall bit count.  
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2.5 Comparison of Traditional Techniques  

Traditional compression techniques comparison emphasizes the differences between various 

algorithms lossy and lossless. For the lossy compression, it reduces the file size and can affect 

the quality by losing information in the reconstructed images which is often acceptable. On the 

other hand, lossless techniques ensure that the reconstructed image quality well preserved 

where image quality maintain take precedence. Table 2-2 presents various traditional 

compression methods with its type, applications, strengths, and weakness for each, while lossy 

techniques prioritize efficiency and lossless techniques focus on accuracy.  

Table 2-2 Traditional Image Compression comparison 

Techniques 
Compression 

Type 
Applications Strengths Weakness 

Run-Length 

Encoding (RLE) 
Lossless 

Used in binary 

images and bitmaps 

based repetitive 

image patterns 

 

- Simple in terms of 

implementation. 

- Robust for identical 

pixels images with long 

runs. 

- Less effective for high 

complex image variation. 

- Limited compression ratio. 

JPEG (DCT-

based) 
Lossy 

Utilized in 

photographic digital 

and online images 

- Natural images with high 

compression ratio values. 

- Widely supported. 

- Customizable balance 

quality/ compression. 

- Blurriness (blocks effect) 

at high compression ratios 

with artifact images. 

- inconvenience with 

sharpened and edged 

images.  

Huffman Coding Lossless 

Lossless 

compression 

technique applied on 

PNG, and GIF 

images  

- Highly preserves 

original images details. 

- high performance with 

imbalanced probability 

distributions. 

- Less efficiency for image 

with uniform distributions. 

- symbol probabilities 

knowledge required.  

Lempel-Ziv-

Welch (LZW) 
Lossless 

Lossless 

compression for 

GIFs, and TIFFs 

formats 

- No requirements for 

image distribution prior 

knowledge.  

- Less efficient with 

complex images. 

Inefficient for complex 

images with a moderate 

compression ratio. 

Fractal Coding Lossy 

Compression of 

natural images (e.g., 

landscapes) 

- High compression ratios. 

- Independent resolution 

(scalable images). 

- Exceedingly slow encoding 

process. 

- Inappropriate for all image 

types. 

Discrete Cosine 

Transform (DCT) 
Lossless 

Widely used in 

JPEG compression  

 

- Low complexity 

- Elevated compression ratio 

with artifacts.  

- For text images or sharp 

edges is not suitable. 
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Predictive Coding 

(DPCM/ADPCM) 
Lossy 

Lossless/lossy 

compression in 

image processing 

and speech  

- Simple implementation. 

- Appropriate for 

predictable data 

sequences. 

- Inappropriate for high-

frequency variations. 

- Not suitable for images 

with details. 

Arithmetic 

Coding 
Lossless 

Lossless 

compression 

- compared to Huffman 

coding, it gives better 

compression results. 

- More flexible. 

- Computationally complex. 

- Time-consuming 

compression. 

Vector 

Quantization 

(VQ) 

Lossy 

Used in video 

coding image and 

low-bit-rate 

- Applied in low-bit-rate 

with acceptable 

compression ratio. 

- Redundancy reduction.  

- Possibility for image 

distortion. 

- Complex generation of the 

codebook. 

Wavelet 

Transform 
Lossy 

medical imaging, 

satellite imagery, 

JPEG2000 

- representation of 

multiresolution images.  

- Better handling of sharp 

edges than DCT. 

- efficient for complex 

images. 

- Complex regarding 

computation. 

- Large memory 

requirements. 

SHANON-FANO 

CODING 
Lossless 

Early lossless 

coding algorithm, 

mostly of historical 

interest 

- easy to understand. 

- Conceptually simple. 

- Basis for more advanced 

algorithms like Huffman 

coding. 

- Less efficient compared to 

Huffman coding. 

- Optimal prefix codes are 

not always optimal. 

 

 

Next section, present medical imaging modalities which comes with large size requiring file 

size reduction while preserving its quality for an optimized transmission and storage.  

2.6 Medical Image Modalities 

Medical imaging modalities used to visualize the different representations and details of the 

human body using a specific medical image equipment and technologies to help radiologists 

and clinicians to diagnose several diseases. Each technique differs in term of information 

representation, details of the specific body part for effective treatment. These modalities 

are: X-ray, Magnetic Resonance Imaging (MRI), Positron Emission Tomography (PET) 

scans, Computed Tomography (CT), and ultrasound, as illustrated in Figure 2-2. 
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Figure 2-2 Various Medical Imaging Techniques and Their applications [21] 

One of the most used technique is x-ray imaging, it generates images of dense structures to 

diagnose a range of diseases, ranging from chest problems to bone fractures and dental 

issues by employing ionizing radiation to capture these images. Furthermore, Magnetic 

Resonance Imaging (MRI) produces images of a high-resolution quality for capturing some 

minor tissues such as muscles, brain, and ligaments using radio waves. On the other hand, 

Computed Tomography (CT) displays complex structures, soft tissues and organs by 

combining x-ray images to create cross-sectional view from different angles. For the 

Positron Emission Tomography (PET) scans uses gamma rays from injected radioactive 

tracers for displaying bones images and organs scans. Finally, Ultrasound uses sound waves 

to generate abdominal images, bones, and soft tissues as described in Table 2-3. Each 

technique generates and visualize specific organs, soft tissues, bones, tumors, and others 

providing accurate diagnosis, and treatment planning.  

Table 2-3 Medical Image Comparison [21] 

Techniques Anatomy  Functionality  Advantages  Disadvantages 

X-ray 

Radiography 
Chest  

used to produce 

images of bones, 

tumors, and other 

dense matter. 

-The procedure is non-

invasive, rapid, and 

painless.  

-The insertion of an 

arterial catheter and 

guidewire is not 

required. 

-No real-time 

information.  

-Cannot be done without 

contrast (allergy, 

toxicity). 

Magnetic 

resonance 

imaging (MRI) 

Abdomen 

Brain 

Heart 

used to produce 

detailed images of 

organs, soft tissues, 

bones, ligaments, and 

cartilage. 

-There are no ionizing 

rays.  

-The spatial resolution 

is excellent. 

-Sensitivity is relatively 

low. -The scan and post-

processing times are 

long. comparatively 

costly 
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Nuclear 

medicine 

imaging 

including 

positron 

emission 

tomography 

(PET) 

Brain  

Heart 

-A radioactive ’tracer 

‘is injected, inhaled, 

or swallowed.  

-The scanner uses the 

gamma rays emitted 

by this material to 

display images of 

bones and organs. 

-Can aid in the 

diagnosis, treatment, 

or prediction of a 

variety of conditions.  

-Can determine how 

far a cancer has spread 

and how well 

treatment is working. 

-Some people may 

experience allergic or 

injection. 

-site reactions as a result 

of radioactive materials. 

Computed 

tomography (CT 

scans) 

Abdomen 

Brain 

Heart 

Multiple X-rays are 

used to create cross-

sectional layers that 

show detailed images 

of bones, organs, 

tissues, and tumors 

inside the body. 

-Immediate and 

painless.  

-aid diagnosis and 

treatment of a wider 

range of conditions 

than a standard X-ray. 

-utilizes higher doses of 

radiation than a X-ray.  

-Anesthesia is required 

for some procedures. 

Ultrasound Heart  

-High-frequency 

soundwaves are used 

to generate moving 

images of the inside 

of the body on a 

screen, including 

organs, soft tissues, 

bones, and an unborn 

baby. 

-High-resolution 

images.  

-Real-time information 

-Time consuming.  

-Veins can’t be seen in 

their whole. 

 

Medical imaging modalities plays a vital role in diseases diagnosis, on the other hand 

confronting challenges in transmission and storage due to its large file size. The application 

of the different compression techniques reduces image size while preserving its quality. 

Thus, next section introduces the compression techniques in details. 

2.7 Conclusion 

Image compression has become crucial for digital images’ size reduction while maintaining 

image quality; it is a critical tool for data storage optimization, faster transmission, and 

reconstruction for a wide range of applications. Throughout this chapter, various traditional 

compression techniques have been explored including lossy and lossless methods, their 

mechanism, suitability for different types of images, and a comparison based on compression 

type, application, and strengths and weaknesses of each.  

As the demand of high image resolution continue to grow, especially in medical imaging 

domain such as CT, X-rays, and MRIs scans in terms of volume and complexity, selection of 

appropriate compression technique is required for a balance of compressed image size and high-

quality reconstructed image. Machine learning and deep learning techniques revolutionized 

image compression field for more efficient compression, offering adaptability in handling larger 

datasets, and minimizing quality loss for accurate diagnosis and clinical interpretation. 
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3.1 Introduction 

achine learning is an essential subfield of artificial intelligence (AI), it focuses on 

creating algorithms that allow computers to learn and adapt without human 

involvement. Machine learning models constantly improve their performance by analyzing 

earlier data and experiences, resulting in increased efficiency over time. 

This chapter looks into machine learning approaches, such as unsupervised learning, 

supervised learning, and deep learning approaches that will be used in our research. With their 

ongoing development, both machine learning and deep learning technologies have come to be 

extremely efficient in solving challenging problems in a wide range of fields. Various methods, 

such as support vector machines, decision trees, and clustering algorithms, come under the 

category of machine learning. All of these techniques are designed to identify patterns, 

categorize information, and predict from input features. All these approaches come under 

unsupervised, supervised, and reinforcement learning. These are extremely helpful when 

handling structured data. 

 Deep learning is a subset of broad machine learning; it uses multi-layered artificial neural 

networks to handle large volumes of unstructured data such as photos, text, and audio. 

Recurrent Neural Networks (RNNs) and Convolutional neural networks (CNNs) excel in image 

classification, natural language processing, and time-series forecasting because they can detect 

subtle hierarchical patterns in data. 

 This chapter provides a thorough examination of deep learning and machine learning 

techniques, comparing their applications, advantages, and limitations. 

3.2 Machine learning techniques 

Machine learning techniques are categorized into three main types: unsupervised learning, 

supervised learning, and semi-supervised learning. This research introduces and explains the 

main algorithms of each technique starting by supervised leaning techniques to deep learning 

models, as stated in Figure 3-1. 

M 
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Figure 3-1 Different machine learning techniques [21] 

3.2.1 Supervised learning 

Supervised learning is a subfield machine learning in which models are modeled on labeled 

data, its aim is that algorithms minimizes the error between its predictions and true outputs. It 

is grouped into regression and classification algorithms where a known set of outputs is used 

to guide the learning process. 

3.2.1.1 Classification  

In supervised learning, classification is a used to train models on labeled data into 

predefined classes, it aims to learn features to distinguish one class from others. Its types are 

binary classification involving two classes in which the model is trained to differentiate 

between two categories, also Multiclass classification is applied to a model that predicts more 

than two classes, and multilabel classification in which data points belong to multiple classes 

simultaneously. 

3.2.1.1.1 K-Nearest Neighbors (KNN) 

K-nearest neighbors (KNN) is a sort of a supervised classification technique, it uses the 

similarity principle to classify data based on the defined ‘K’ parameter; this technique 

calculates the distance using Euclidean, Manhattan, or Minkowski distances as a similarity 

measure between target and training datasets’ points. For each new point x, the process begins 
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by identifying its K-nearest neighbors from the training data before making a prediction, then 

the new assigned point will be classified as the most common class among its k-nearest 

neighbors. There exist several strategies to choose K value; the simple one is running the 

algorithm repeatedly with different K values to choose the one with higher performance [22]. 

The KNN presents a simple and effective method while sensitive in terms of ‘K’ value choice, 

small ‘K’ value can lead to a higher sensitivity to noise, while large ‘K’ value is more robust 

to noise.  

For instance, Euclidean distance metrics is defined as follows: 

 

𝑑(𝑥, 𝑥𝑖) =  √∑ (𝑥𝑗 − 𝑥𝑖,𝑗)
2𝑛

𝑗=1          ( 3-1) 

𝑘𝑛𝑛 = {𝑘 − 𝑚𝑖𝑛 (𝑑(𝑥, 𝑥𝑖))}         ( 3-2) 

 

Where: 𝑥𝑗 and 𝑥𝑖,𝑗 represent the j-the features of points 𝑥 and 𝑥𝑖, respectively. 

 

3.2.1.1.2 Support Vector Machines (SVM) 

Support Vector Machine (SVM) is a supervised nonlinear binary classification learning 

model, it was introduced by Vanpik in 1992.  SVM aims to identify the optimal hyper plane 

that divides data points in a high dimensional space. Also, serves to optimize the margin 

between different classes, making it effective for both linearly separable and non-linearly 

separable data. SVM’s application are different in several tasks, such as in medical diagnosis, 

face recognition, text classification, financial forecasting.  

 

3.2.1.1.3 Naive Bayes 

The Naive Bayes classifier is a probabilistic model that applies Bayes' theorem; it performs 

effectively with limited data, because it assumes conditional independence between features 

given the class label. This classifier frequently demonstrates remarkable effectiveness and is 

extensively utilized due to its ability to surpass more complex classification techniques in 

performance [23]. Variants of Naive Bayes are Gaussian, Bernoulli, and Multinomial Naive 

Bayes. Calculating posterior probability as follows: 

 

𝑃(𝐶│𝑥) =   𝑃 (𝑥│𝐶)  . 𝑃(𝐶) / 𝑃(𝑥)          3-3) 

𝑃(𝐶|𝑥) =  𝑃(𝐶) ∏ 𝑃 (𝑥𝑖│𝐶)𝑛
𝑖=1      ( 3-4) 
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Where: P(𝐶│𝑥) is the conditional probability.  

             P (𝑥│𝐶)   is the likelihood. 

              P(𝐶)  is the prior probability of class C. 

               𝑃(𝑥) is the predictor’s prior probability. 

 

Naive Bayes classification involves calculating P(𝐶│𝑥) for every class C and assigning x 

to the class with the highest conditional probability. 

3.2.1.1.4 Decision Tree  

Decision tree algorithm is also a supervised machine learning technique employed for both 

classification (classification tree) and regression (regression tree). It partitions data into subsets 

based on attribute’s value, starting from root node and at each node, the tree recursively divides 

the data according to a feature until the stopping criteria are met. Each branch represents the 

result of a decision, while each leaf node indicates a class label or predicted value. Using two 

well-known criteria or metrics such as Entropy and Gini to split and determine attribute’s value 

for each node defined as follows, recursively: 

 

𝐺𝑖𝑛𝑖 = 1 − ∑ 𝑝𝑖
2𝑛

𝑖=1                                                (3-5) 

𝐸𝑛𝑡𝑟𝑜𝑝𝑦 =  − ∑ 𝑝𝑖 𝑙𝑜𝑔2(𝑝𝑖)
𝑛
𝑖=1                             3-6) 

Where 𝑝𝑖 is the probability of class 𝑖 at that node.  

 

3.2.1.1.5 Random Forest  

Random Forest represents an aggregation of multiple classifiers introduced by Beirman. 

[24] To build or constructs a single classifier [25], it serves as an ensemble learning technique 

for classification, proving highly effective on complex datasets. By building this classifier, its 

performance can be better than individual classifier does [26], to enhance model’s accuracy 

and robustness this model builds multiple decision trees then combines their outputs each tree 

is selected randomly with replacement (bagging), which increases generalization and reduces 

overfitting. In this method increased number of trees no longer significantly to improve the 

performance according to Beirman.  

 

 

 



Chapter 3. Machine Learning Techniques 

42 

 

3.2.1.2 Regression  

Regression is a technique within supervised learning. that predict outcomes based on input 

features or variables and to model the relationship between them. Most common regression 

technique is introduced in the next section. 

3.2.1.2.1 Linear Regression 

Linear regression is a supervised machine learning model and a basic statistical technique. 

It aims to model the relationship between one or more independent variables and a continuous 

dependent variable. Its equation is as follows: 

𝑦 =  𝛽0 + 𝛽1𝑥1                                         ( 3-7) 

Where: y is the dependent variable 

            𝛽0 is the predicted value when 𝑥 value is 0 

            𝛽1 is coefficient for each feature 

            𝑥1 is the independent feature 

3.2.2 Unsupervised learning 

In contrast to supervised learning, unsupervised learning is a type of machine learning that 

focuses on training a model without labeled data, and without predefined classes. It includes 

clustering and dimensionality reduction. 

3.2.2.1 Clustering  

Clustering is the process of dividing data into groups, with each group containing similar 

characteristics based on a similarity measure and by minimizing the distance between points 

and the cluster center. Most common clustering algorithms includes k-means (used in our 

study) which is discussed in the next section. 

3.2.2.1.1 K-Means  

K-Means serves as an unsupervised learning algorithm based on data partitioning into Into 

a specified number of clusters "K", determined by the similarity of each data point to another 

using Euclidian distance that minimizes the total squared distance between the cluster centers 

and the data points in each group. defined as follows: 

𝑚𝑖𝑛 ∑ ∑ ∥ 𝑥 − 𝜇𝑖 ∥2
𝑥∈𝐶𝑖

𝑘
𝑖=1               (3-8) 

Where: K is the number of clusters. 

           𝑥 represents each data point. 

           𝐶𝑖 is the i-th cluster. 
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𝜇𝑖 is the centroid of the i-th cluster. 

∥ 𝑥 − 𝜇𝑖 ∥2 is the squared Euclidean distance. 

K-means steps are as follows: 

• Selection of K initial centroids. 

• Each data point is grouped with the nearest cluster center point based on distance 

measure. 

• The centers are updated by recalculating the average of all points assigned to each of 

the K clusters. 

• This process continues until convergence or until a predefined number of iterations is 

reached. 

3.2.2.2 Dimensionality Reduction 

Dimensionality reduction refers to the process of converting data with many features into a 

space with fewer dimensions, while retaining the most important information. A widely 

adopted method for this purpose is Principal Component Analysis (PCA), which is utilized in 

our study and described in the following section.  

3.2.2.2.1 Principal Components Analysis (PCA) 

Principal Component Analysis (PCA) is a linear data dimension reduction method with the 

objective of preserving the most significant information in a data set and converting it into a 

new set of variables called principal components. PCA makes data visualization more efficient 

by representing it in the lower-dimensional space and reducing the data by lowering its 

complexity. 

3.2.2.2.2 Autoencoders 

An autoencoder, originally proposed by LeCun in his doctoral thesis [27], It consists of two 

main parts: an encoder that converts input data into a compressed latent space representation, 

and a decoder that maps back the input from this representation. These two components work 

together to compress data into a compact form without compromising its quality, and it is 

therefore applicable for successful image transmission and storage. The use of autoencoders in 

image compression provides a foundation for the attainment of successful input data 

representations [28]. Figure 3-2 illustrates the architecture of an autoencoder. 
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Figure 3-2 Architecture of an autoencoder 

 

3.2.3 Semi- Supervised Learning 

Semi-supervised learning is a machine learning approach that combines the strengths of 

supervised and unsupervised learning by training on a large set of unlabeled data alongside a 

smaller set of labeled data. Aiming to address the challenge of scarce labeled data, which is 

often costly and time-consuming to acquire, this approach helps reduce the effort and expense 

involved in building high-performing models. It is particularly beneficial for labeling large 

datasets required in supervised learning. 

3.2.4 Reinforcement learning 

Another type of machine learning is reinforcement learning (RL), the latter is about 

interacting with the environment using an agent that takes different actions and receive 

feedbacks as penalties or rewards. These outcomes improve the decision-making task and 

reinforce agent’s knowledge with optimal strategies to attain lasting goals through this process. 

This learning technique is a powerful tool for different intelligent systems’ development such 

as robotics, and autonomous vehicles. 

3.2.5 Deep learning 

Deep learning is a subset of machine learning that concentrates on algorithms built around 

artificial neural networks with different multiple layers, mimicking the human’s brain structure 

and function, it extracts high-level representations from raw input data, deep learning 

techniques have evolved over decades; driven by progress in computational power, the 

availability of large datasets, and advancements in training algorithms. 

3.2.5.1 Convolutional Neural Network (CNN) 

A Convolutional Neural Network (CNN) is a type of deep learning model and a specialized 

subclass of Artificial Neural Networks (ANNs); CNNs were developed for many purposes, 
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such as, image segmentation, visual data processing and evaluation, image classification, and 

object detection. It consists of different multiple layers, starting from convolutional layers 

which applies convolution operations to detect features (textures, edges, and patterns), and 

each convolutional layer learn to extract complex features using RELU (Rectified Linear Unit) 

function. Then, pooling layers that reduces spatial dimensions (down sampling) while 

maintaining crucial features using max pooling and average pooling methods. Finally, fully 

connected layers (dense layers), which interpret learned features and map them to output 

classes, like in classification tasks. CNN’s capacity performs in features extraction from raw 

pixel data; as presented in Figure 3-3. 

 

Figure 3-3 The Architecture of CNN’s Model [29] 

 

3.2.5.2 Recurrent neural networks (RNN) 

Recurrent neural networks (RNNs) are a class of neural networks designed to detect patterns 

in a sequence of data, where the order of data points is important [30]. Unlike traditional feed 

forward neural networks, RNNs utilize recurrent connections to preserve information from 

previous inputs via hidden states, which makes them well suited for tasks like medical data 

analysis, time-series data, and natural language processing (NLP). However, standard RNNs 

struggles from vanishing gradient problems, making process of learning long-term 

dependencies difficult. To tackle this issue, advanced variants such as Long Short-Term 

Memory (LSTM) networks and Gated Recurrent Units (GRUs) are employed; enabling 

learning that is more efficient over long sequences. RNNs applications are varied such as in 

the text generation tasks, speech-to-text-systems and medical sequence analysis (e.g., ECG 

signal classification). 

3.2.5.3 Deep Generative Models 
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The core concept of generative models is to learn the underlying probabilistic distribution 

of a data class, enabling the generation of new, similar data instances. [31]. Generative models 

can generally be classified into two primary categories: 

• Cost function-based models: Generative adversarial networks, adversarial 

autoencoders.  

• Energy-based models: Boltzmann Machines, Restricted Boltzmann Machines, Deep 

Boltzmann Machines, Deep Belief Networks, Generative Stochastic Networks, and 

Binary Boltzmann Machines. 

3.2.5.4 The Activation functions in deep learning models 

The Activation functions play an important role in deep learning models, controlling how 

neurons compute and transmit information. They introduce nonlinearity, allowing neural 

networks to learn sophisticated patterns rather than linear transformations. 

1. Linear Activation Function 

Example: 

f(x) = ax                                            (3-9) 

o The network has no non-linearity, resulting in straightforward linear 

regression. 

o Used in regression models, not deep networks. 

2. Non-Linear Activation Functions 

Non-linearity is required for deep networks to learn complicated patterns. These can 

be further divided as: 

a) Sigmoid-Based Functions 

o Sigmoid:  

f(x) = 
1

1+𝑒−𝑥                                           (3-10) 

→ Used for binary classification. 

o Tanh (Hyperbolic Tangent):  

f(x) = 
𝑒𝑥−𝑒−𝑥

𝑒𝑥+𝑒−𝑥
                                       ( 3-11) 
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→ Zero-centered output. 

b) ReLU-Based Functions (Piecewise Linear) 

o ReLU (Rectified Linear Unit):  

f(x) = max(0, x)                         (3-12) 

→ Fast and commonly used in deep networks. 

o Leaky ReLU: Allows small negative values to prevent dead neurons. 

o Parametric ReLU (PReLU): Learns the negative slope. 

o Exponential Linear Unit (ELU): Smoothens ReLU to improve learning. 

c) Probability-Based Functions 

• Softmax: Converts logit values to probabilities for multi-class categorization. 

Specialized Classification of Activation Functions 

In addition to Linear vs. Non-Linear, several scholars classify activation 

functions according to: 

• Monotonic vs. non-monotonic: Sigmoid and Tanh are monotonic, whereas ReLU 

is not. 

• Unbounded vs. Bounded: ReLU is unbounded, but Sigmoid and Tanh are bound. 

• Continuous vs. Discontinuous: Most are continuous, but Hard Threshold functions 

are discontinuous. 

3.3 Conclusion 

Machine learning is today a common technology on a range of applications. This chapter 

examined an overview of some of the most significant machine learning and deep learning 

methods; which have revolutionized several domains by learning patterns from data and 

making intelligent decisions. We have discussed machine learning techniques encompassing 

supervised learning, unsupervised learning in details, each introduced with its algorithms, 

which has provided foundational methods for tasks like clustering, classification, and 

regression. Then, we discussed deep learning and its different models’ architectures such as 

CNNs, RNNs, and deep generative models. However, deep learning and machine learning 

models will continue to dive innovation with the ongoing research, shaping artificial 

intelligence’s future across industries. 
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4.1 Introduction 

ompressed Medical Image Compressing medical images is a critical field of medicine, the 

reflection of growing demand for successful storing, transmission, and processing good-quality 

medical images. Some traditional compression techniques such as JPEG2000 and SPIHT are now widely 

employed methods; nevertheless, they will certainly struggle to achieve high compression ratios without 

losing good diagnostic data.  

Medical image compression using machine learning has been classified into three categories: supervised 

learning, unsupervised learning, and deep learning.  In the field of medical image compression, a number 

of approaches are addressed, with a focus on the strengths and limitations of each supervised method that 

utilizes labeled data to enhance the effectiveness of compression algorithms.  

This chapter offers a detailed survey of recent advancements in medical image compression using 

machine learning, focusing on supervised and unsupervised approaches. PCA and clustering methods have 

been noted to emphasize their usage in data structuring and dimension reduction. Autoencoders (AE), 

Convolutional Neural Networks (CNN), Deep Convolutional Autoencoders (DCAE), and Variational 

Autoencoders (VAE) have been vital in medical image compression in deep learning. Based on the review 

of the key studies and new releases, we discuss the merits, demerits, and areas of study in the existing 

methods. In totality, the existing chapter provides insightful remarks regarding how machine learning is 

poised to reshape the future of medical image compression based on its different techniques and practical 

applications. 

4.2 Medical Image Compression based Machine Learning Techniques  

 Medical image compression has been well-researched using supervised as well as unsupervised 

machine learning techniques. Supervised approaches tend to utilize labeled data with models at the cost of 

diagnostic quality to reduce compression. PCA and K-means clustering are examples of such unsupervised 

approaches that employ natural data patterns to compress without needing labeled input. In order to present 

the efficiency, application, and limitations of different methods for compressing medical images, various 

studies have been presented in this section. 

 

4.2.1 Supervised Learning Techniques for Medical Image Compression 

As part of this investigation, we carried out this research with a thorough survey [21], which covered 

several techniques, such as Support Vector Machines (SVMs), Decision Trees, and different deep learning 

architectures. The use of supervised learning methods for medical image compression depends on training 

the models on labeled datasets that optimize the reconstruction process. Nevertheless, the survey also noted 

a number of drawbacks, including high processing demands and restricted applicability to other medical 

imaging modalities. As explained in [21], these realizations influenced the later development of our CAE-

C 
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based compression strategies. 

Medical image compression, which includes multiple methods of compression, including the widely 

used lossless compression technique for different medical picture modalities, is one of the most important 

processing tasks in many medical imaging applications.  Due to its size, the medical image needs to be 

compressed while maintaining the regions of interest using various machine learning and deep learning 

techniques. In [32], a hybrid technique that combines lossless and lossy compression, by using recurrent 

neural networks and the discrete walvet transform on brain images that are identical to CT and MRI images.  

Therefore, RNNs are enhanced by integrating the Gravitational Search Algorithm with Particle Swarm 

Optimization (GSA-PSO) to reduce losses during lossy compression; the non-ROI and ROI portions of the 

brain images were compressed separately using optimized RNN and, DWT, which together produced a 

higher PSNR than the previous techniques.  

In various deep learning applications, the widely used U-net segmentation neural network is employed 

to segment medical images and define the region of interest (ROI) within the image, and then the 

information is compressed using an auto-encoder neural network, that uses a convolutional neural network 

[33]. The findings suggest that the proposed solution effectively preserves most of the image's visual 

information, particularly in the ROI, while reducing the required storage size.Additionally, [34] offers a 

method for convolutional recurrent neural networks (RNN-Conv) to compress x-ray pictures. With high 

compression ratios (CR) of 40 or more, the suggested method works better than any other method for low-

resolution photos; nevertheless, noise from an alternative image capture technology causes a little 

degradation at low compression. A medical X-ray image compression system was also tested using 

machine learning algorithms, including decision trees (DT), support vector machines (SVM), back-

propagation neural networks (BPNN), gradient boosting algorithm (GBA), logistic regression (LR), and 

radial basis function neural network (RBFNN), the effectiveness of the proposed discrete cosine transform 

(DCT)-based image compression with nine compression ratios was evaluated. RBFNN produced the best 

overall result.  

Moreover, CNNs [35] are used to compress medical images in three steps: compression, segmenting 

the compressed sections, and data preprocessing to minimize OCT image noise.  This facilitates the 

effective training of CNNs for both reconstruction and compression.  The preprocessing module's semantic 

segmentation images were used to train these two networks concurrently.  The test results demonstrate that 

the proposed framework outperforms existing methods in terms of MS-SSIM and visualization, with the 

difference being especially noticeable at higher compression ratios. Lossless and near-lossless techniques, 

as proposed in [36] apply a prediction-based compression method using the CLEF Med 2009 dataset for 

medical images. These techniques retain image quality in the diagnostically important region (DIR) even 

after compression by separating the image into foreground (DIR) and background (NON-DIR) regions 
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through a graph-based segmentation (GBS) technique. For the DIR parts, near-lossless and lossless 

compression methods are used, while a lossy compression technique is applied to the non-DIR parts. 

During the compression and decompression stages, feed-forward neural networks (FF-NNs) (Predictors) 

are trained using a Gravitational Search Algorithm and a Practical Swarm Algorithm to predict current 

pixel values based on neighboring pixels. Experimental results show that the gravitational search algorithm 

outperforms the particle swarm algorithm in near-lossless prediction. Moreover, the lossless compression 

approach increases the PSNR and reduces the CR values compared to the near-lossless approach. In 

contrast, the gravitational search algorithm demonstrates better performance in near-lossless prediction 

than the particle swarm algorithm. A detailed comparison of the different machine learning techniques is 

provided in Table 4-1.  

Table 4-1 Comparative Study of the Different Machine Learning Techniques for Medical Image Compression 
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4.2.2 Unsupervised Learning Techniques for medical Image Compression based K-MEANS – PCA 

According to [39], traditional machine learning techniques are typically thought to be easier to 

understand and converge more quickly than deep learning techniques. For various medical imaging 

applications, efforts have been made to improve medical image compression and accuracy by exploring 

different approaches, such as PCA and k-means; Table 4-2 provides a thorough comparison of the data and 

highlights the differences between the various methods. The important contributions in this field are briefly 

summarized in the next section. First, k-means clustering compression was incorporated into logistic 

chaotic map encryption in [40] by shrinking the input image and enlarging the encryption key space. 

Several metrics, including the Peak Signal-to-Noise Ratio (PSNR), Mean Squared Error (MSE), Structural 

Similarity Index (SSIM), and correlation coefficients, are used to assess the efficacy of the suggested 

approach. Additionally, this study examines both modern and old lossy image compression techniques 

using the Kodak dataset [41], with a particular emphasis on autoencoders, Kmeans, DWT, and PCA or 

principal component analysis. The study reveals a relationship between SSIM and K values, where higher 

K values lead to longer processing times, and concludes that the K-means algorithm operates best when K 

https://en.wikipedia.org/wiki/optical_coherence_tomography
https://en.wikipedia.org/wiki/optical_coherence_tomography
https://en.wikipedia.org/wiki/optical_coherence_tomography
https://en.wikipedia.org/wiki/Recurrent_Neural_Network
https://en.wikipedia.org/wiki/CLEF
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is set to 16. 

However, in [42] ,the authors propose an automated arbitrary principal component analysis (AAPCA) 

as a regional compression technique, which uses a block-to-row principal component analysis algorithm 

(BTRPCA) based on factorization to compress the ROI after separating it from the background using brain 

symmetry. Principal Component Analysis (PCA) was used as a dimensionality reduction algorithm for 

brain MRI scans.  In comparison to current compression techniques, the results show better segmentation, 

higher compression rates overall, and improved performance metrics (PSNR and Correlation coefficient 

(CoC)). It also achieved higher compression rates for non-ROI (NROI) while optimally compressing the 

ROI at a lower rate. 

Besides, [43] introduces a novel medical image compression technique based on block-to-row 

bidirectional PCA with a focus on ROI. The method's superiority in terms of providing increased 

compression ratios and peak signal-to-noise ratios was demonstrated in Table 4-2 by comparing its 

performance with the performance of other existing methods, such as ROI-based block-by-block PCA and 

ROI-based block-to-row PCA. Added to that, the authors of [44] assess the effectiveness of PCA and 

Wavelet Difference Reduction (WDR) on rib cage X-ray and lower abdomen CT scans. For both CT and 

X-ray pictures, the increase in the number of main components results in a drop in MSE and an 

improvement in PSNR. Compared to CT scans with comparable components, X-ray scans show inferior 

compression efficiency despite having a higher PSNR. Compared to CT scans of the same constituents, X-

ray scans exhibit a low compression efficiency for a better PSNR. Therefore, a new hybrid color image 

compression technique was put forth [45] that combines the strengths of PCA (PCADTT) and Discrete 

Tchebichef Transform (DTT). It utilizes PCA to provide the reduction in dimensions of images and DTT 

to improve image quality for best image compression. The experimental results show that this approach is 

better than current methods in compression ratios, processing complexity, and image quality for a range of 

categories of image contents. 

Table 4-2 Comparative Analysis of State-of-the-Art Lossy Image Compression Techniques, Including PCA, 

Kmeans, CNN, AE, DCAE, and VAE [29] 

Learning 

Technique 

Ref Year Model Dataset 

Evaluation Metrics 

MSE PSNR 
MS-

SSIM 

CR 

PCA 

[45] 2021 PCA-DTT Different Color Image - 33.43 0.97 
- 

[44] 
2019 

PCA And Wavelet 

Difference Reduction 

(WDR) 

 

Lower Abdomen CT 

Scan 
0.21 53.00 - 

- 

Rib Cage X-Ray Scan 
0.62 

47.16 - 
- 
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[43] 
2017 

Block-By-Block PCA 

MRI, CT, X-RAY 

- 39.01 - 
- 

Block-To-Row PCA - 38.79 - 
- 

Block-To-Row Bi-

Directional PCA 
- 39.02 - 

- 

[42] 2022 AAPCA MRI Brain Images - 47.96 - 
- 

Kmeans 

[41] 2022 
Kmeans-Based Lossy 

Compression 
Kodak Dataset 43.97 31.69 0.90 

4.58 

[40] 2021 
Kmeans-Based Lossy 

Compression 
Two Colored Images 

4.73 × 

10−4 
33.24 0.97 

- 

 

4.2.3 Deep Learning Based Approaches for Medical Image Compression 

Medical image compression methods based on deep learning utilize the strength of neural networks to 

learn compact and efficient representations of medical images. In this part, Autoencoders, Convolutional 

Autoencoders (CAE), and Variational Autoencoders (VAE) has been presented for a detailed comparative 

description of experts’ research in this field.  

4.2.3.1 Autoencoder-based Methods for Medical Image Compression  

Turning to autoencoders, Senapati et al., [46] used a three-layer autoencoder architecture and a Kaggle 

dataset to study the compression and denoising of grayscale medical images. The proposed model was 

trained to predict the original, clean information from the noisy input using denoising autoencoders with 

non-linear activation characteristics on images corrupted with Gaussian noise. The findings from the 

comparative analysis of findings generated from methods like total variation and wavelet denoising 

showed that the model proposed performed better than others, specifically the SSIM.  Furthermore, layer-

by-layer pre-training was achieved by implementing the Deep Autoencoder for high dimensionality 

reduction using the Deep Boltzmann Machine as an approximation inference technique [47]. When 

compared to the performance of other autoencoders, such as Deep Autoencoder with Restricted Boltzmann 

Machine (DA-RBM), Deep Autoencoder with multiple back propagation (DA-MBP), and Deep 

Convolutional Autoencoder with RBM (DCA-RBM), the results showed that the suggested approach was 

effective and produced the best results in terms of PSNR, SSIM, and MSE. A two-stage autoencoder 

system for compressing malaria red blood cell (RBC) image patches is suggested in [48]. A residual-based 

dual autoencoder network, the suggested decompressor module reconstructs the original image while 

identifying distinguishing features.  The quality of the chrominance component in cell pictures is assessed 

using the Color-SSIM metric after decompression.  In comparison to previous neural network-based 

compression techniques for medical images, the suggested method shows gains in PSNR, Color SSIM, 
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and MS-SSIM of roughly 35%, 10%, and 5%, respectively.  

Liu et al. [49], introduce a new medical image compression technique using variational autoencoders 

(VAEs) that combine VAE and residual network models.  The objective is to obtain high image 

reconstruction and low information loss.  Enhanced PSNR and MS-SSIM values are shown in experimental 

results compared to traditional approaches. Conversely, Bale et al. present a fresh image compression with 

nonlinear transforms [50] by using an application of a form of stochastic gradient descent; the model 

resolves zero-gradient artifacts of quantization and learns rate-distortion performance. The rate-distortion 

performance and image quality of the proposed model are comparable to baseline JPEG and JPEG 2000 

compression. Vikraman and Jabeena [51] proposed a hybrid machine learning approach with two 

segmentation and optimization stages as a bridge to CNN. The approach divided the images into ROIs and 

NROIs using the Grey Wolf Optimization with Fuzzy C-Means algorithm. The ROI was later compacted 

by an optimized convolutional neural network (Op-CNN), while the NROI was compacted using recurrent 

neural networks (RNNs). With a PSNR of 45.502, the new approach outshone the existing approaches in 

quality. Conversely, Surbhit Shukla and Anugrah Srivastava [52] introduced a technique that makes use 

of wavelet transformation and convolutional neural networks (CNNs).  A three-hidden-layer network was 

trained using a variety of medical imaging, such as CT, MRI, and X-ray scans.  With fewer hidden neurons 

than image pixels, the network was able to compress target images by storing activation values and weights 

after training.  For all examined medical photos, the algorithm performed better than alternative techniques 

in both lossy and lossless compression. 

By using Convolutional Autoencoder Neural Networks (CAE-NN) for both the compression and 

decompression operations, the authors used DCAE in [53], [54], and utilized ADAM Optimizer to reduce 

loss and noise in the reconstructed image. While the outcomes were not very noteworthy, CAE Networks 

outperformed more traditional encoders like quantization and DCT in terms of efficiency.  

Further, Guerrisi et al proposed a lossy image compression technique based on convolutional 

autoencoders (CAEs) [54] . Sentinel-2 images were utilized by the authors to evaluate the CAE 

architecture, measuring the quality of images in terms of SSIM and PSNR. Further, the authors explored 

the compressed images with respect to their usefulness in object detection applications. In another paper 

[55], three lossy image compression architectures were introduced by the authors: Super Resolution (with 

SRCNN structure), Generative Adversarial Networks (GANs), and Convolutional Autoencoders (CAEs). 

CAEs, in the authors' view, are valid alternatives to traditional transforms like the wavelet transform and 

the Discrete Cosine Transform (DCT) since they learn efficient compact features for improved coding 

efficiency over JPEG. Two application domains where GANs exhibit promising benefits are higher 

compression ratios and good subjective quality reconstruction. Super-resolution achieved the best rate 

distortion (RD) performance of the architectures and it is equal to that of BPG. It is notable to mention the 
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recent progress in weakly supervised learning techniques, particularly in medical image analysis, though 

our research is mostly focused on unsupervised learning from compression techniques. We are motivated 

to investigate similar approaches in compression issues, by the success of semi-supervised techniques in 

learning from unlabeled data, as illustrated by the UKSSL model proposed by Ren et al.[56], The potential 

advantages of having both unlabeled and labeled data in our compression methods are suggested by the 

use of contrastive learning models, e.g., MedCLR, for extracting knowledge and later fine-tuning with 

sparse labeled data. Also, the use of poorly supervised approaches, viz., instance-based, bag-based, and 

hybrid approaches, suggests how strong the models are under noisy or sparse labels [57]. Although its 

primary domain is medical image analysis, this weakly supported learning observation has a broader 

impact on increasing the flexibility of compression algorithms when presented with faulty or incomplete 

data. Finally, the research of [58] is grounded in the idea of a Quantum-amplified Artificial Neural Network 

framework to foster medical image compression. The key idea is to use quantum computing to maximize 

feature extraction and later integrate it with traditional neural network architectures. By projecting classical 

data into quantum states and further utilizing these states and then subjecting them to quantum circuits, the 

model outputs amplified feature vectors that are taken as inputs by a traditional neural network for 

compressing images. 

The QANN model leverages quantum entanglement, parallelism, and superposition to achieve image 

compression via feature extraction and compression of their representation with the assistance of quantum 

processing. Compression is then succeeded by inverse operations or classical image processing techniques 

that recover the image. The model has demonstrated enhanced peak signal-to-noise ratio and structural 

similarity index, and reduces image size for MRI (73.3%), X-ray (74.1%), and CT-SCAN (71.8%). The 

combination of quantum feature extraction with traditional neural networks proves that quantum 

computing can significantly increase the efficiency of medical image processing solutions. Table 4-3 

illustrates a comparative analysis of state of the art. 

 

Table 4-3 Comparative Analysis of State-of-the-Art: Lossy Image Compression Techniques, Including AE, 

DCAE, and VAE [29] 

Learning 

Technique 

Ref Year Model Dataset 

Evaluation Metrics 

MSE PSNR 
MS-

SSIM 

CR 

AE 

[48] 2020 
Lossy Compression 

Based-Autoencoder 

Malaria Cell Images 

Dataset 
- 35.91 0.97 

- 

[47] 2020 

Deep Autoencoder with 

Deep Boltzmann 

Machines 

NIH Clinical Center’s 

Chest X-Ray Image 

Dataset 

0.01 37.02 0.99 
- 
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[46] 2022 
Compression And 

Denoising AE 

Kaggle Dataset- 

Medical MNIST 

Dataset 

- 23.91 0.92 
- 

VAE 

[50] 2018 
End-To-End 

Compression 
Kodak Test Set - 32.43 0.97 

- 

[49] 2022 
Lossy Compression 

Based-VAE 

TCGA-LUAD Lung 

Cancer CT Image 

Dataset 

- 

Higher PSNR 

And MS-SSIM 

Values Than 

Ballé 2018 

- 

CNN 

[51] 2023 

Optimized 

Convolutional Neural 

Network (Op-CNN) 

Brain MRI 

Segmentation 
2.33 45.50 - 

27.45 

[52] 2018 

Compression Based-

Neural Networks (CNN 

+ LWT) 

MRI, X-Ray, 

Computer 

Tomography Images 

/ 39.59 - 
 

DCAE 

[54] 2023 

Lossy Compression 

Based-Convolutional 

Neural Network 

Images In the RGB 

Spectrum Obtained 

from Sentinel-2 Data. 

- 25.65 0.87 
- 

[53] 2020 

Convolutional Auto 

Encoder Neural 

Network (CAE-NN) 

MNIST Dataset 108.2 - - 
- 

[55] 2018 CAE IMAGENET Database - 26.48 0.82 
- 

 

4.2.3.2 Convolutional Autoencoders (CAEs) Vs. Run-Length Encoding (RLE) Based Compression 

Techniques 

This section provides a concise summary of current approaches for compressing medical images using 

both conventional and deep learning techniques.  

 First, using the BRATS dataset, the authors of [59] suggest an SPIHT picture compression method 

based on regions of interest.  In comparison to the traditional SPIHT, our technique prioritizes clinically 

essential regions and operates well at low bit rates while demonstrating higher visual quality.  Additionally, 

Prasantha et al. [60] used MSVD, which divides the image into 64 × 64 blocks and applies SVD to each 

block, rather than using the SVD approach on the full image.  Particularly in the ROI, MSVD exhibits 

better visual quality at the same bit rate than SPIHT while simultaneously lowering computing cost when 

compared to conventional SVD. 

On the other hand, [61] authors offer a no-reference method of compressed medical image evaluation 

that mimics the formations of medical images by classifying the shapes of the images using a convolutional 

neural network. CNN classification accuracy is calculated by calculating the loss of information because 
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of irreversible operations. Using various interpolation methods, studies discovered that the model could 

distinguish between photo quality encoded by JPEG and JPEG2000 with great accuracy. 

Nagoor et al. [62] use deep neural networks to apply lossless compression techniques for volumetric 

medical images by taking advantage of structural similarity and shared feature representation across 

multiple scans with the same resolution and acquisition parameters, as well as local sampling (3D cube 

and 3D pyramid) within a single volume. Flattened 1D vectors of 3D nearby voxel sequences were used 

to train the model. When compared to the most advanced lossless compression techniques, the results show 

a greater compression ratio. In a different use of deep learning,  [63] suggested a lossless method for 

compressing medical images by segmenting them into sections according to anatomical traits using 

anatomical information and a deep neural network. After that, the suggested neural network is trained to 

produce the best predictors for every area. With a 38%, gain in compression performance over JPEG2000, 

this "split and conquer" strategy produces better compression. 

Additionally, Shukla et al. [52] included a left wavelet transformation and used the backpropagation 

technique to train a three-layer convolutional neural network. The goal of this research is to outperform 

feed-forward neural networks in terms of compression. Furthermore, a high PSNR for MRI and CT scan 

images with good image quality retention was obtained by integrating the wavelet-SPIHT approach after 

compression. Furthermore, [29] suggested CNN, AE, and DCAE compression algorithms, which were 

then applied to the medical x-ray imaging dataset (MXID).  With a PSNR value of while maintaining a 

high-quality reconstructed image and important features, DCAE performed better in experiments than 

CNN and AE. 

For 16-bit depth medical image compression, a better JPEG-XT algorithm (OPT_JPEG-XT) was 

introduced in [64] it multiplies the discrete cosine transform coefficients by N, which allows for lossy and 

lossless compression.  The truncated decimal parts of the DCT coefficients in standard JPEG-XT are kept 

by OPT_JPEG-XT, according to the experiments of the authors. With the maintenance of lossless 

compression within the upper sub-images, results show a very high compressed image quality with MSE 

less than 0.08 and higher PSNR values at a saving space rate (SSR) of 60%. 

When investigating the application of the Discrete Wavelet Transform to the compression of numerous 

images. Agarwal et al. [65] compressed Magnetic Resonance Imaging (MRI) using wavelet families and 

resolutions. Large medical images can be sent using this DWT-based technique, which uses Haar, 

Daubechies type 4, and Bi-orthogonal wavelets to produce a high compression ratio with a satisfactory 

visual image quality. 

Additionally, two identical feed-forward neural networks (FF-NNs) (predictors) using gravitational 

search and particle swarm algorithms were applied in lossless and near-lossless approaches using 

predictive image coding techniques in [36] on the CLEF med 2009 dataset.  Additionally, the method 
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separates images into diagnostically important regions (DIRs) and non-DIRs using a graph-based 

segmentation (GBS) technique.  With a Markov model and arithmetic coding, the prediction error is 

significantly reduced.  This method produced better results than near-lossless methods, with a PSNR of 

41.46 dB and a CR of 8.85. Further, utilizing a deep convolutional neural network to learn compact 

representations of medical images, followed by a Huffman encoder, Navaneethakrishnan & Shanmugam 

[66] created a novel method for compressing medical images.  Using the databases Kaggle and Medpix.  

The results demonstrate the efficacy of the suggested method with high SSIM and SSS values, which show 

a high degree of similarity between the compressed and original images, good compression ratios, which 

range from 25.76 to 29.97 and PSNR values, which range from 43.51 dB to 46.29 dB. 

 

 

4.3 Conclusion 

Machine learning has greatly facilitated medical image compression research using adaptive and data-

driven techniques that surpass traditional methods both in efficiency and information retention. In this 

chapter, different machine learning techniques (supervised, and unsupervised) has been presented 

alongside with the deep learning-based researches on (Autoencoders, CNNs, and VAEs).  

This chapter outlined recent developments in medical image compression using machine learning, 

outlining various methodologies, their applications, and relative strengths. As promising as deep learning 

has rendered the area of compression, a detailed state of the art has been presented, where we have tried to 

recover the most similar studies by researchers in medical image compression field. The next chapter will 

explain thoroughly the details on the newly created MXID dataset in this research for different medical 

imaging tasks, such as classification, segmentation, compression, and detection. 

 

 

 

 

 

 

 



 

 
 

 

5 CONSTRUCTED MXID DATASET  

Contents 
5 CONSTRUCTED MXID DATASET ............................................................................................................ 60 

5.1 Introduction .................................................................................................................................................... 61 

5.2 MXID Dataset Construction .......................................................................................................................... 61 

5.2.1 Overview of our MXID dataset ................................................................................................................. 62 

5.2.2 Dataset Collection and preparation ............................................................................................................ 62 

5.2.3 Dataset labeling ......................................................................................................................................... 64 

5.2.4 Dataset for body part and gender classification ......................................................................................... 65 

5.2.5 Dataset Split ............................................................................................................................................... 65 

5.2.6 Dataset for patient identification ............................................................................................................... 67 

5.2.7 MXID dataset for medical image compression ......................................................................................... 68 

5.3 MXID Dataset’s Characteristics ................................................................................................................... 68 

5.4 Comparison with Existing Datasets .............................................................................................................. 69 

5.5 Overview of LAVIA-MXID dataset .............................................................................................................. 72 

5.6 Comparative Description of MXID and LAVIA-MXID Dataset ............................................................... 75 

5.7 Conclusion ....................................................................................................................................................... 76 

 

 

 



Chapter 5. Constructed MXID Dataset 

 

61 

 

5.1 Introduction 

he storage and processing of medical imaging, and more specifically X-ray scans, are at the center 

of the modern practice of healthcare diagnostics. The usefulness of the technique is that it is cost-

effective, efficient, accessible, non-invasive, and has great potential for diagnosis, for example, the 

identification of fractures, identification and assessment of infection, and the evaluation of a range of 

pathological conditions. However, many problems are created by the increasing amount of data, 

including storage and transmission. To address these challenges, a comprehensive dataset named MXID 

(Medical X-ray Imaging Dataset) has been developed in this research. This dataset facilitates image 

compression, enhancement, classification, and various other processing tasks at an efficient scale. 

Designed to be both high-quality and widely accessible, it serves as a valuable resource for evaluating 

and training machine learning and deep learning models. 

Comprising 6,869 high-quality X-ray images, the MXID dataset has been collected from AOUINET 

Hospital in Tebessa, it includes X-ray images from 18 different anatomical regions classified and 

categorized based on patient gender and body part identification (type). The dataset is constructed to 

support different image processing tasks, including image classification, segmentation, detection, 

augmentation, compression, machine learning and deep learning-based techniques.   

This chapter includes a full explanation of the MXID dataset, including dataset collection, 

preprocessing, labeling, classification, characteristics, and a comparison to other datasets. In addition, 

an expanded set of 3,120 X-ray pictures has been included for the 18 distinct classes in MXID, dubbed 

LAVIA MXID—an improved version with higher diversity and a richer collection of medical images. 

This extended dataset is an invaluable resource for developing and training machine learning and deep 

learning approaches for a wide range of medical image processing jobs. 

5.2 MXID Dataset Construction 

MXID dataset creation is a neatly organized process for a quality medical X-ray image dataset suitable 

for analysis activities across a range of different tasks. The initial step is tackling the real acquisition of 

images from medical sources to ensure accuracy and authenticity. Preprocessing methods can include 

scaling, normalization, and removal of noise to enhance and preserve uniformity of quality images. For 

a well-balanced anatomical shape of different body areas, the images are carefully annotated in different 

zones of anatomy. The final dataset is divided into a test set, a validation set, and a training set for 

preparations on its intended uses, namely, image compression as well as the training of models for 

diagnostic use. 

T 



Chapter 5. Constructed MXID Dataset 

 

62 

 

5.2.1 Overview of our MXID dataset     

        Specialist radiologists and doctors have painstakingly built and labeled the various elements of 

the medical body.  Through labelling each image with the right body part, an accurate assessment of 

compression performance is attempted.  The suggested MXID dataset was built sequentially, as seen 

in Figure 5-1. The dataset is divided into train, validation, and test sets with a trained split. This 

approach ensures that body parts are distributed equitably among subgroups, which reduces bias, and 

enables the development and test of models without doubt. 

 

Figure 5-1Representation of the MXID Dataset Development Process [29] 

 

5.2.2 Dataset Collection and preparation 

This study is based on a collection of 6,869 medical images acquired from AOUINET Hospital, 

Tebessa City, Algeria. The images were collected over two periods of time: August-October 2022 

and January-April 2023. All of them have a resolution of 1024 × 1024 pixels and were taken from 

patients undergoing diagnostic imaging scans. The acquisition technique utilized computed 

radiography (CR) plates to effectively position patients inside the treatment area for lung block form 

design. 

For digitization of images, CR 15-X tabletop system was used. It is a good cost-benefit ratio with 

excellent image quality by Agfa HealthCare's established technology. It is designed for flexibility 
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with adjustable speed, easy workflow, and compatibility with a broad range of digital radiography 

applications. To boost imaging capability further, it can be combined with an NX workstation, a 

DRYSTAR 5302 digital thermal printer, or an SE software package. 

Optimal imaging is achieved in the CR 15-X with the MUSICA image processing algorithm that 

can automatically analyze all the features of all images and automatically adjust the processing 

parameters. This leads to optimal imaging results irrespective of body area variation or X-ray dose 

levels, with less retakes and post-processing. Moreover, with a DR system, MUSICA provides an 

image consistency of computed radiography (CR), but with increased diagnostic accuracy. Being 

executable on its own in the form of an algorithm, there is no calibration and preprocessing needed 

with human intervention, hence being readily implementable with or without training. 

For ensuring patient data confidentiality, the database was anonymized in its entirety by removing 

names and all other identifiable personal information. 152 incomplete or faulty images were picked 

up during preliminary scanning in the quality control process. They were then erased to ensure the 

accuracy and reliability of the dataset. This systematic identification and rejection of erroneous 

images also contributes to improving the overall quality of the dataset, reducing potential bias and 

making downstream experiments and analysis more reliable. 

Lastly, to preserve the quality and integrity of the dataset, an equally careful screening was also 

performed to eliminate duplicate images. Duplicate images that recurred repeatedly were scanned and 

eliminated one by one, leaving behind a single instance of each unique image. In both data collection 

processes, over a hundred duplicates were found and eliminated. Figure 5-2 illustrates some example 

images of the proposed MXID dataset. 

 

Figure 5-2Visual Samples of the MXID Dataset [29] 
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5.2.3 Dataset labeling 

Following the preparation phase, a thorough manual verification was conducted to confirm the 

accuracy of the labels of the dataset. The images were verified one by one to confirm that the label 

accurately represented the visual information. Any errors identified were corrected on the spot, and 

comments were made. This rigorous verification went on until all the images of the dataset had been 

verified. Following the manual review, a script was run to verify that no labeling errors were 

committed on the entire dataset. The script searched for any discrepancy between the filenames and 

image labels. The images that were flagged were then intensively searched for any errors in an effort 

to identify and correct any errors to guarantee the correctness of the dataset. 

The medical record dataset was built on a highly structured naming convention for each image. 

The norm has fields in the captioned format of PatientID, TypeID, Image_Count, Gender, and Serial 

Number. In this approach, each patient is assigned a unique identification that is tagged as PatientID 

to make it easy to manage medical data and identify various X-ray images of a subject. TypeID 

classifies the category of image, and the part of the body or condition it shows. Such a systematic 

nomenclature system guarantees consistency and comprehension in processing the dataset. 

Furthermore, the Image Copies attribute provides the number of various images that were taken 

for a patient, each one being of a different body part in a particular medical case. A valuable 

demographic attribute is added to the database by the Gender attribute, with 0 indicating males and 1 

indicating females. In addition, as shown in Figure 5-3, a Serial Number is given to every image that 

is a unique identifier for the vast majority of images of the same modality and patient. 

 

 

Figure 5-3 Comprehensive Image Labeling Displaying Specific Identifiers for PatientID, TypeID, 

Image_Count, Gender, and Serial_Number [29] 

 

This annotated data provides a solid basis for detailed examination and analysis. It was developed 

with extreme attention to detail and extensively validated by an experienced panel of experts, 
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including radiologists, to be accurate and reliable. 

5.2.4 Dataset for body part and gender classification 

X-ray imaging is the most widely used technique in medical imaging, which employs a variety 

of techniques to produce precise images of the body's internal organs for diagnostic purposes. The 

lung, belly, tooth, skull, leg, upper arm, knee, finger, cervical spinal column, lumbar spine, ankle, 

foot, wrist, forearm, elbow, and pelvic basin are among the 18 carefully categorized body component 

categories found in the MXID collection. Every one of these X-ray types provides vital medical data 

that enables physicians to identify and diagnose a variety of illnesses. Each image is classified as 

either male or female in order to provide a demographic dimension. The MXID dataset's photo 

distribution by gender and body part is shown in Figure 5-4. 

 

Figure 5-4 Image Distribution in the MXID Dataset by Body Part and Gender [29] 

5.2.5 Dataset Split 

The database was strictly divided into different subsets based on an automated multiclass 

methodology for providing sufficient training, testing, and validation of the model. The process 

divided the photographs equally among the three sets. Ten percent were reserved for validation, 

twenty percent for testing, and seventy percent for training based on a predefined ratio. The 

division maintained that all the subgroups had a representative class label in balanced form. 

Distribution of the X-ray images on the basis of gender and body part is described below. Table 

5-1 displays the training, testing, and validation samples utilized, while the gender distribution 

for body part is presented in Table 5-2. 
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Table 5-1 Strategy for Dividing the MXID Dataset into Training, Testing, and Validation Sets [29] 

TypeID Study Train Test Validation Total 

01 ABDOMEN 742 221 101 1064 

02 DENTAL 177 47 24 248 

03 FOREARM 129 35 15 179 

04 ANKLE 209 57 37 303 

05 CERVICAL SPINAL 

COLUMN 
96 27 11 134 

06 LUMBAR SPINE 177 61 30 268 

07 ELBOW 133 34 21 188 

08 SKULL 404 111 63 578 

09 FINGERS 56 16 8 80 

10 UPPER ARM 212 51 36 299 

11 FEMUR 44 13 8 65 

12 KNEE 276 82 42 400 

13 LEG 76 19 8 103 

14 TOES 35 10 5 50 

15 PELVIC-BASIN 159 44 25 228 

16 FEET 282 82 45 409 

17 WRIST 434 133 56 623 

18 LUNG 1159 343 148 1650 

 Total 4800 1386 683 6869 

 

Table 5-2 Gender Allocation Across Various Body Parts in the MXID Dataset [29] 

TypeID Study Male Female Total 

01 ABDOMEN 588 476 1064 

02 DENTAL 115 133 248 

03 FOREARM 127 52 179 

04 ANKLE 191 112 303 

05 CERVICAL SPINAL 

COLUMN 
75 59 134 

06 LUMBAR SPINE 152 116 268 

07 ELBOW 120 68 188 

08 SKULL 406 172 578 

09 FINGERS 61 19 80 

10 UPPER ARM 187 112 299 
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11 FEMUR 49 16 65 

12 KNEE 211 189 400 

13 LEG 79 24 103 

14 TOES 39 11 50 

15 PELVIC-BASIN 135 93 228 

16 FEET 256 153 409 

17 WRIST 455 168 623 

18 LUNG 984 666 1650 

 Total 4230 2639 6869 

 

5.2.6 Dataset for patient identification 

By identifying likely relationships and patterns between a large number of body areas, this multi-

dimensional approach improves diagnostic accuracy. The 5,318 multibody component imaging 

dataset includes a strong foundation for using machine learning to improve medical diagnosis and 

inform the building of personalized treatment regimens. The images are organized and archived 

systematically after being assigned new names, after renaming with the PatientID_TypeID-

ImageCount_Gender_SerialNumber scheme. Figure 5-5 clearly illustrates this naming convention. 

 

● Patient identifier: P00051. 

● Type identifier: 06, 15, 17, 03, 08, 18, 01, 12. (representing different body parts) 

● Image count: from 01 to 10. 

● Gender: 0 ('0' represents male) 

● Serial number: unique identifier for each image from 00075 to 00085. 

 

The sample image depicts a patient P00051 receiving X-rays of different parts of the body, e.g., 

Lumbar Spine (06), Pelvic-Bassin (15), Wrist (17), Forearm (03), Skull (08), Lung (18), Abdomen 

(01), and Knee (12). The patient received 10 different sessions of X-ray imaging for different parts 

of the body, as illustrated in Figure 5-5. 
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Figure 5-5 Patient Identification – Illustrating the Association of a Single Patient with Multiple X-ray Images 

from Different Body Regions [29] 

5.2.7 MXID dataset for medical image compression 

6,869 medical X-ray images from the MXID dataset have been utilized in this research study. This 

was resized to 256 × 256 pixels memory-efficiently when implementing it. Due to this, division of 

the provided dataset into various groups was done automatically using an automatic multiclass 

partition method so that there would be adequate training, testing, and validation of the model. 

Partitioning was performed automatically to achieve balanced sample distribution and proportionate 

class label representation. The dataset was divided into three subsets with a fixed proportion of 60% 

for training, 20% for testing, and 20% for validation. Automatic multiclass partitioning gives class 

labels balanced in subsets, leading to overall better balance in the dataset. Besides, preprocessing 

methods like scaling, normalization, and feature extraction were also applied to improve the images 

prior to analysis. The increasing demand for high-resolution medical images has posed serious 

challenges in picture storage, transmission, and retrieval. Thus, there is an urgent need for new 

compression and data management techniques to utilize these precious diagnostic tools efficiently, 

which will be discussed in the subsequent section. 

5.3 MXID Dataset’s Characteristics  

MXID dataset is a diversified structured medical X-ray image dataset for addressing a wide variety of 

medical imaging analytical tasks. The key features are: 

• Collected 9,989 high-quality X-ray images. 

• Image resolution: 1024 by 1024 pixels. 
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• Body Part Categories: Images are labeled based on anatomical regions in order to maintain 

balanced distribution. 

• Data was collected at AOUINET Hospital, Tébessa city, over two years. 

• The images are kept in PNG to maintain quality. 

• The dataset is unlabeled for pathology and can be used for any of the image analysis applications. 

• Dataset partitioned into: training, validation, and testing subsets for machine learning 

applications. 

• Diversity: Covers many body areas, making it suitable for deep learning models in medical 

imaging. 

5.4 Comparison with Existing Datasets 

The advancement and assessment of machine learning algorithms in the field of medical imaging 

are significantly dependent on the quality and balance of the datasets utilized. To pinpoint areas 

requiring enhancement and further investigation, it is essential to analyze the existing datasets and 

understand their constraints. Table 5-3 offers a summary of the characteristics of these datasets along 

with a concise description. 

The MURA dataset [67] consists of a large set of musculoskeletal images aimed at aiding the 

training of deep learning models for the diagnosis of skeletal conditions. While the dataset serves 

as a valuable resource, it may fall short in precisely depicting certain anatomical regions, as some 

variations might not be fully reflected in the X-ray images. Additionally, the NIH Chest X-ray 

dataset [68] comprises a vast set of frontal chest X-ray images that capture various conditions, 

including pneumonia, lung nodules, and other abnormalities. Although the dataset is a valuable 

resource, it may fall short in its ability to reflect some regions of anatomy, as some of the variations 

may not be fully reflected in the X-ray images. The NIH Chest X-ray dataset [68] also includes a 

vast repository of frontal chest X-ray images that reflect various conditions like pneumonia, lung 

nodules, and so on. Although its focus is primarily on chest disorders, limiting its explanation to 

other parts of the body, it remains a useful resource in creating and validating machine learning 

models. Alternatively, the Chest X-ray 8 dataset [69] is a collection of chest X-ray images and their 

corresponding radiological reports. It encompasses more than one abnormality type, such as lung 

nodules, pneumonia, and cardiomegaly. This database has served as a standard for building and 

testing algorithms that are programmed to read chest X-rays. The JSRT dataset [70], likewise, 

primarily concerns pulmonary diseases and has served extensively in the research to build and test 

methods for lung abnormality detection and classification. 

The RSNA Pneumonia dataset [71] is a chest X-ray image database that specializes in pneumonia 
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detection. It serves as a benchmark dataset for training and validation of algorithms aimed at the 

detection and diagnosis of pneumonia. Likewise, the INbreast dataset [72] contains mammographic 

images for breast cancer screening. The dataset is suitable for additional research studies and 

algorithm development for the detection of breast cancer. Meanwhile, the ISIC Skin Lesion dataset 

[73] has a wide variety of skin lesions and is a core dataset for training models in skin lesion 

classification and diagnosis. It discusses a number of skin diseases, including melanoma, with a 

sharp interest in lesion analysis. 

The LIDC-IDRI dataset [74] features chest CT scans that are predominantly centered on lung 

nodules. It has been frequently employed in the development and evaluation of computer-aided 

detection (CAD) systems designed for the identification and classification of these nodules. 

Likewise, the Open-I dataset [75] represents a multimodal medical imaging repository that 

encompasses images from multiple body regions. This dataset is a significant resource for 

researchers and medical practitioners engaged in a range of medical image processing endeavors. 

This dataset encompasses a diverse range of medical imaging modalities, such as X-rays, CT scans, 

and MRI scans. Furthermore, the CAMELYON16 dataset [76] is specifically focused on breast 

cancer detection, serving as a benchmark for the automated diagnosis and classification of breast 

cancer, and comprises digitized histopathology slides. Figure 5-6 represents a comparison of related 

datasets based on images number. 

 

Figure 5-6 Comparison of Related Datasets Based on the Number of Images [29] 

Advancing machine learning in medical imaging depends on the development of comprehensive and 

diverse X-ray datasets. Maintaining consistency and accuracy in model training is essential for reliable 

performance. Addressing these challenges can lead to more accurate diagnostic algorithms, ultimately 

improving patient care and overall healthcare outcomes. Table 5-3 illustrates the availability of publicly 

accessible medical X-ray datasets with corresponding ground truth. 

 



Chapter 5. Constructed MXID Dataset 

 

71 

 

Table 5-3 Summary of Publicly Accessible Medical Radiography Image Datasets [29] 

Datasets Refs Clinical Context 

The 

number of 

images 

Body parts Data source Availability 

Our Dataset 

MXID 
/ Multi-body parts 

6869 

images 

Skull, legs, lungs, 

shoulders, knees, 

fingers, cervical 

spinal column, 

lumbar spine … 

AOUINET 

Hospital 

Publicly 

available 

MURA Dataset [67] 
Musculoskeletal 

disorders 

40561 

images 

Elbow, finger, 

forearm, hand, 

humerus, shoulder, 

and wrist 

Stanford 

University 

Publicly 

available 

NIH Chest X-ray 

Dataset 
[68] Chest conditions 

100,000 

images 
Chest 

National 

Institutes of 

Health 

Publicly 

available 

ChestX-ray8 [69] Chest conditions 
108,948 

images 
Chest 

National 

Institutes of 

Health 

Publicly 

available 

JSRT [70] 
Pulmonary 

diseases 
247 images Chest 

Japanese 

Society of 

Radiological 

Technology 

Available 

(limited 

access) 

RSNA Pneumonia [71] Pneumonia 
30,000 

images 
Chest 

Radiological 

Society of 

North America 

Publicly 

available 

INbreast 

 

[72] 

 

Breast cancer 

screening 
410 images Breast 

University of 

São Paulo 

Available 

(limited 

access) 

ISIC Skin Lesion [73] Skin lesions 
33,126 

images 
Skin 

International 

Skin Imaging 

Collaboration 

Publicly 

available 

LIDC-IDRI [74] Lung nodules 
1,018 

images 
Lung 

National 

Institutes of 

Health 

Available 

(limited 

access) 

Open-I [75] 
Various medical 

images 
7470 

Multiple body 

parts 

National 

Library of 

Medicine 

Publicly 

available 



Chapter 5. Constructed MXID Dataset 

 

72 

 

CAMELYON16 [76] 
Breast cancer 

detection 
23916 Breast 

Radboud 

University 

Medical Center 

Available 

(limited 

access) 

 

Image quality problems can make it difficult to identify details in medical X-ray images, and 

compression techniques can make the task even more difficult. Maintaining image integrity is the 

main goal of medical image compression [77]. Pixel-level compression accuracy should be precisely 

evaluated as part of an efficient evaluation process for X-ray image compression [78]. The two main 

categories of image compression methods are lossless and lossy. Compared to the original, lossy 

compression drastically lowers file size but degrades image quality [21]. Conversely, lossless 

compression reduces file size without sacrificing data, which makes it appropriate for applications 

that need accurate medical evaluations. Image compression is covered in more detail in the following 

section. 

5.5 Overview of LAVIA-MXID dataset 

The LAVIA-MXID dataset is an upgrade of the MXID dataset supplemented with 6869 X-ray 

images in that this upgraded version is accomplished with greater diversity and a more extensive set 

of medical images. It now comprises 9989 images selected and handled by expert radiologists and 

medical experts. Every image in the LAVIA-MXID dataset is meticulously labeled with its 

corresponding body area as displayed in Figure 5-7, thus allowing precise evaluation of various 

medical analysis techniques. Due to its extremely fine-grained annotations, the dataset can even be 

utilized for a wide range of machine-learning and deep-learning applications. 

 

Figure 5-7 LAVIA-MXID Dataset Distribution Across Body Parts 
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The process of dataset preparation is such that it ensures a balanced composition of different body 

parts to avoid bias while training and testing models. Figure 5-8 demonstrates that all images are 

also logically divided into train, validation, and test sets, which are beneficial for model development 

and model testing. The dataset includes 9,989 images collected in a time span of approximately two 

years from the AOUINET Hospital in Tebessa City. All of the medical images are of a size of 1024 

× 1024 pixels. LAVIA-MXID dataset is ready for a range of image analysis goals other than 

compression of images, and images are categorized by body part and tested for consistency. 

However, it does not possess any annotations regarding pathological conditions because it is to be 

used along with a range of image analysis goals rather than being restricted to pathology-specific 

studies. 

 

Figure 5-8 LAVIA-MXID Dataset Distribution Based Gender Across Body Parts 

Table 5-4Comparison of Sample Counts in the LAVIA-MXID and MXID Datasets, Categorized by Body Part and 

Gender 

N˚ 
body 

part 
Dataset 

Mal

e 

Femal

e 
Total N˚ 

body 

part 
Dataset Male 

Femal

e 
Total 

1 
Abdome

n 

LAVIA

-MXID 
738 587 1325 

2 
Dental 

 

LAVIA

-MXID 
265 256 521 

MXID 588 476 1064 MXID 115 133 248 

3 

 

 

Forearm 

LAVIA

-MXID 
171 78 249 

4 Ankle 

LAVIA

-MXID 
463 272 735 

MXID 127 52 179 MXID 191 112 303 



Chapter 5. Constructed MXID Dataset 

 

74 

 

5 
Cervical 

Spine 

LAVIA

-MXID 
177 115 292 

6 
Lumbar 

Spine 

LAVIA

-MXID 
303 252 555 

MXID 75 59 134 MXID 152 116 268 

7 Elbow 

LAVIA

-MXID 
198 97 295 

8 Skull 

LAVIA

-MXID 
473 189 662 

MXID 120 68 188 MXID 406 172 578 

9 Fingers 

LAVIA

-MXID 
83 27 110 

10 
Upper 

arm 

LAVIA

-MXID 
275 173 448 

MXID 61 19 80 MXID 187 112 299 

11 Femoral 

LAVIA

-MXID 
69 24 93 

12 Knee 

LAVIA

-MXID 
341 280 621 

MXID 49 16 65 MXID 211 189 400 

13 Leg 

LAVIA

-MXID 
98 39 137 

14 Toes 

LAVIA

-MXID 
59 23 82 

MXID 79 24 103 MXID 39 11 50 

15 
Pelvic-

Basin 

LAVIA

-MXID 
209 152 361 

16 Feet 

LAVIA

-MXID 
259 154 413 

MXID 135 93 228 MXID 256 153 409 

17 Wrist 

LAVIA

-MXID 
702 260 962 

18 Lung 

LAVIA

-MXID 
1280 848 2128 

MXID 455 168 623 MXID 984 666 1650 

 

Table 5-5 LAVIA-MXID Dataset Partitioning Across Training, Testing, and Validation Sets 

Body part 
MXID Dataset LAVIA-MXID Dataset 

Train Test Validation Total Train Test Validation Total 

ABDOMEN 659 307 98 1064 913 272 140 1325 

DENTAL 150 71 27 248 352 111 58 521 

FOREARM 106 56 17 179 165 65 19 249 

ANKLES 181 93 29 303 520 148 67 735 

CERVICAL SPINAL 

COLUMN 
79 43 12 134 

210 55 27 292 

LUMBAR SPINE 158 81 29 268 395 103 57 555 

ELBOW 122 55 11 188 209 48 38 295 

SKULL 338 171 69 578 448 134 80 662 
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FINGERS 48 23 10 81 73 24 13 110 

UPPER ARM 188 81 30 299 316 88 44 448 

FEMUR 37 26 2 65 72 11 10 93 

KNEE 232 131 36 399 437 120 64 621 

LEG 67 27 9 103 102 24 11 137 

TOES 29 13 7 49 56 17 9 82 

PELVIC-BASIN 138 58 32 228 259 67 35 361 

FEET 254 112 44 410 307 54 52 413 

WRIST 383 176 64 623 682 188 92 962 

LUNG 963 517 170 1650 1537 403 188 2128 

Total 4132 2041 696 6869 7053 1932 1004 9989 

5.6 Comparative Description of MXID and LAVIA-MXID Dataset 

The LAVIA-MXID dataset is an upgraded version of the MXID dataset, with increased variety 

and dataset size. Table 5-6 is a comparative analysis of important differences between the two: 

 

Table 5-6 Comparison of the MXID and LAVIA-MXID datasets 

ASPECT MXID DATASET LAVIA-MXID DATASET 

DATASET SIZE 6,869 9,989 

DIVERSITY 
Moderate, primarily covering 

specific body parts 

Enhanced with a more balanced representation 

across various anatomical areas. 

LABELS Labeled by body region and 

gender 

 

Labeled with expert validation for accuracy. 

DATA COLLECTION Sourced from AOUINET 

Hospital 

 

Expanded dataset with added images to enhance 

diversity. 

PIXEL DENSITY  

1024 × 1024 pixels 

 

1024 × 1024 pixels 

DATA FORMAT  

PNG 

 

PNG 

DATA 

SEGMENTATION 

Divided into training, 

validation, and testing sets. 

 

Preserves the structured partitioning to enhance 

model assessment. 
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APPLICATION Primarily used for image 

analysis, compression, and 

classification 

Extended to support deep learning-based 

diagnostic research and wider applications 

 

LAVIA-MXID is a polished and fully-fledged version of MXID with a more extensive and 

balanced dataset that has further increased its use in medical image analysis, compression methods, 

and deep learning-based solutions. 

5.7 Conclusion 

This chapter covered the entire process of dataset preparation, organization, and generation, 

emphasizing the key significance of high-quality medical X-ray datasets for most image analysis 

tasks. The chapter introduced LAVIA-MXID as a more sophisticated MXID, a dataset that was 

developed with the vision of offering a more rich and organized set of images to support the 

development of accurate machine-learning models. Additionally, a comparative analysis of relevant 

datasets demonstrated the exclusive strengths and advantages of the proposed dataset. The chapter 

also discussed significant features such as dataset partitioning strategies and image preprocessing 

techniques, demonstrating their impact on model performance. By presenting a well-structured and 

well-organized dataset, the subsequent steps serve as the foundation for applications in image 

compression, model training for diagnostics, and overall medical imaging research, leading to 

further development of AI-based healthcare solutions.
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6.1 Introduction and Motivation 

edical imaging plays a crucial role in healthcare sector, it enables accurate diagnosis 

and aid in treatment planning, and patient monitoring. However, the increasing volume 

of the different modalities of high resolution, such as X-ray, CT scans, and MRIs poses 

challenges in the storage, transmission, and processing; leading to increased costs and 

management complexities. Thus, effective image compression is required to reduce/optimize 

transmission and storage while ensuring no critical loss in diagnostic information. Several 

models have been developed to address these challenges, including Machine Learning-Based 

Compression of Principal Component Analysis (PCA) and K-means clustering, and Deep 

learning models such as Autoencoders (AE), Convolutional Autoencoders (CAE), and 

Variational Autoencoders (VAE) have shown promising results in learning compact 

representations of medical images. 

This chapter presents the implementation details and results of the proposed contributions, the 

datasets used, the objectives of deep leaning models training, and a detailed analysis of 

different results is provided, highlighting comparisons and key outcomes. Additionally, the 

performance of the different deep learning models (AE, DCAE, CNN, and VAE) is assessed 

across multiple X-ray datasets, and the results analyzed in relation to existing works.  

This chapter’s aim is to provide a comprehensive understanding of the contributions in this 

research. Findings are analyzed to highlight the strengths and limitations of each approach. 

Medical image compression progress is required to tackle the increasing issues of storage and 

transmission in healthcare domain. However, the high volume of medical images demands a 

large storage and transmission constraints, which poses challenges for healthcare systems. 

Efficient compression techniques are necessary to improve transmission efficiency and reduce 

storage costs while maintaining crucial diagnostic quality of images. Traditional compression 

techniques often struggle to provide high image quality and maintain the balance with 

compression ratio values; to this end, machine learning and deep learning-based techniques 

offer high performance compression strategies depending on its architecture and datasets.  

This chapter introduces the primary contributions of this research, with emphasis on 

developing and testing machine learning and deep learning-based techniques for compressing 

medical X-ray images, the contributions in this chapter span multiple areas, including: 

• The application of four deep learning models—CNN, AE, DCAE, and VAE—for 

X-ray medical image compression. 

M 
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• The use of machine learning algorithms such as Principal Component Analysis (PCA) 

and K-means clustering. 

This research aims to contribute to the design of efficient, high-quality medical image 

compression techniques for improving data management in healthcare networks. 

This chapter provides research that contributed to the publication of the results of the study 

in a published article titled "Convolutional Autoencoder-Based medical image compression 

using a novel annotated medical X-ray imaging dataset", throughout the Biomedical Signal 

Processing and Control journal, volume 94, August 2024, with the following authors: Amina 

Fettah, Rafik Menassel, Abdeljalil Gattal, Abdelhak Gattal [29]. 

Also, provides two researches of two submitted papers which are under review (one is on 

the LAVIA-MXID, and the other one is on the comparative study of the Convolutional 

autoencoder vs. RLE). Additionally, the generalizability of the different deep learning models 

(AE, CNN, and DCAE) on two additional datasets (OPENI and JSRT), titled “Assessing the 

Generalizability of Deep Learning-Based Compression Techniques for Multibodypart X-ray 

Medical Images: A Comparative Study “, as result of our participation in an international 

conference in Constantine, Algeria.    

 

6.2 Datasets Selection and Description 

6.2.1 Details of the Primary Dataset (MXID Dataset) 

The dataset used in the present study consisted of 6,869 medical X-ray pictures from the 

MXID collection.  During implementation, the images were reduced to a normal 256 × 

256-pixel size to account for memory constraints. [29]. 

6.2.2 Description of the Two Additional Datasets Used for Validation 

OPEN-I Dataset. The Indiana Network for Patient Care's de-identified OPEN-I [2 

collection of chest X-rays includes 3996 radiology reports and 8121 related images. The 

authors carried out de-identification on both reports and photographs; manual coding of the 

reports enhanced retrieval precision, while automatic de-identification of the images 

needed manual verification and was not flawless. 

JSRT Dataset. JSRT is a digital database [3] that includes 247 high quality, 12-bit 

grayscale chest radiographs with and without lung nodules that were collected from 14 
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medical facilities.  The complexity of the lung nodules, which differed in characteristics, 

was used to classify these chest x-ray images. 

6.2.3 Rationale behind Datasets Selection 

The datasets used here in were selected carefully to facilitate the validation of deep learning 

and machine learning-based compression methods. Maintaining image quality, effectiveness 

of compression, and generalizability across imaging modalities are the goals of the selection. 

1. Relevance to Compression of Medical Images 

o High-resolution X-ray images, which are often utilized in medical diagnostics 

and necessitate effective storage and transmission solutions, are included in the 

datasets. 

o X-ray images are a perfect test case for compression strategies since they must 

maintain important anatomical information while minimizing file size. 

2. Diversity and Generalization 

o To evaluate the generalizability of the model across various medical imaging 

sources, several datasets are used. 

o A more thorough assessment of compression techniques is made possible by the 

datasets' variances in picture resolution, contrast levels, and anatomical areas. 

3. Standardization and Comparability 

o The chosen datasets adhere to accepted medical imaging formats, making it 

easier to compare them to previous research and guaranteeing that deep learning 

architectures can use them. 

o They offer a regulated setting for comparing various compression techniques, 

such as CNN, AE, DCAE, VAE, PCA, and K-means clustering. 

4. Availability and Practical Application 

o The datasets are made to match actual medical imaging problems or are made 

publicly available. 

o They are set up to facilitate tests that mimic actual transmission and storage 

limitations in healthcare systems. 

5. Alignment with Research Objectives 

o By employing measurements like PSNR, MS-SSIM, and compression ratio, the 

datasets allow for both a quantitative and qualitative assessment of compression 

techniques. 
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o They are perfect for testing hybrid and deep learning-based methods since their 

selection supports the objective of enhancing medical image compression while 

preserving diagnostic integrity. 

This research guarantees that the suggested compression strategies are both efficient and 

suitable to actual medical imaging scenarios by using a variety of clinically relevant datasets. 

6.3 Training Setup 

6.3.1 Dataset Splits 

In order to enhance the efficiency of training, testing, and validation of the models, the 

dataset was divided automatically by applying a multiclass splitting technique. The process 

ensured an equal representation of class labels and maximized the sample distribution over an 

enormous number of subsets. 60% of the samples were assigned to the training set, 20% to the 

testing set, and 20% to the validation set, using a fixed split ratio.  This automatic multiclass 

split, enriching the dataset representation, essentially captures the resulting subsets’ class label 

distribution.  The images are preprocessed by methods involving feature extraction, scaling, 

and normalization. 

6.3.2 Loss Function 

To train the models based on autoencoders, the Mean Squared Error (MSE) loss function 

was employed. MSE is a standard reconstruction loss function used in image compression 

applications because it computes the mean of the squared errors between the input image 𝑦𝑡𝑟𝑢𝑒,𝑖 

and reconstructed image 𝑦𝑝𝑟𝑒𝑑,𝑖. It is defined as: 

 

MSE= 
1

𝑛
∑ (𝑦𝑡𝑟𝑢𝑒,𝑖 − 𝑦𝑝𝑟𝑒𝑑,𝑖)2𝑛

𝑖=1          ( 6-1) 

 

where n represents the number of pixels in the image. This loss encourages the autoencoder-

based models to minimize the pixel-wise differences between the original and the reconstructed 

images, which ensures fidelity in reconstruction. 

 

Though MSE does not directly measure perceptual quality, it is effective for measuring 

pixel-level similarity. In addition to this, other measurements introduced in the next section, 

such as Peak Signal-to-Noise Ratio (PSNR) and Multi-Scale Structural Similarity Index (MS-

SSIM) were computed in training, providing feedback regarding perceptual quality and 

structural detail preservation.  
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6.3.3 Evaluation Metrics 

To assess the performance of the deep learning-based model, we employed a number of 

quantitative metrics: 

6.3.3.1 Mean Squared Error (MSE) 

MSE used to measure the average of the squared differences between the reconstructed 

and original image; it is widely used in image processing, signal processing, and 

machine learning. 

 

𝑀𝑆𝐸 =  
1

(𝑚 × 𝑛)
 ∑ ∑  (𝐼 (𝑥, 𝑦)  −  𝐾 (𝑥, 𝑦)) ² 𝑛

𝑦=1
𝑚
𝑥=1           ( 6-2) 

6.3.3.2 Multi-Scale Structural Similarity Index (MS-SSIM) 

Multi-Scale Structural Similarity Index (MS-SSIM) used to measure the similarity 

between two images based on luminance, contrast, and structure. Derived from SSIM to 

evaluate quality considering Structural information. 

𝑀𝑆 − 𝑆𝑆𝐼𝑀(𝑥, 𝑦) =  [𝑙𝑚(𝑥, 𝑦)]𝛼𝑀 . ∏ [𝐶𝑗(𝑥, 𝑦)]
𝛽𝑗 . [𝑆𝑗(𝑥, 𝑦)]

𝑦𝑗𝑀
𝑗=1         ( 6-3) 

 

6.3.3.3 Peak Signal-to-Noise Ratio (PSNR) 

PSNR is a measure of the difference of the quality for the reconstructed image compared 

to the original image derived from MSE and expressed in decibels (dB). It is widely used 

to evaluate the performance of compression methods. It represents the ratio between 

power of corrupting noise and the maximum possible power of a signal. 

𝑃𝑆𝑁𝑅 = 20 ×  𝑙𝑜𝑔10(𝑀𝐴𝑋)  −  10 × 𝑙𝑜𝑔10(𝑀𝑆𝐸)       (6-4) 

 

6.3.3.4 Compression Ratio (CR) 

For a high-quality picture, the Compression Ratio (CR) should be lower. The following 

equation is used to measure it. 

 

𝐶𝑅 =  
𝑆𝑖𝑧𝑒 𝑜𝑓 𝑈𝑛𝑐𝑜𝑚𝑝𝑟𝑒𝑠𝑠𝑒𝑑 𝐷𝑎𝑡𝑎

 𝑆𝑖𝑧𝑒 𝑜𝑓 𝐶𝑜𝑚𝑝𝑟𝑒𝑠𝑠𝑒𝑑 𝐷𝑎𝑡𝑎
                       (6-5) 

 

• For all the dataset in machine learning techniques, we used the Average calculating 
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as follow: 

 

𝐴𝑣𝑒𝑟𝑎𝑔𝑒𝑑 𝑀𝑆 − 𝑆𝑆𝐼𝑀  =   (𝑠𝑢𝑚 𝑜𝑓 𝑀𝑆 − 𝑆𝑆𝐼𝑀 𝑜𝑓 𝑒𝑎𝑐ℎ 𝑖𝑚𝑎𝑔𝑒 )/
(𝑁𝑢𝑚𝑏𝑒𝑟 𝑜𝑓 𝑡𝑒𝑠𝑡𝑒𝑑 𝑖𝑚𝑎𝑔𝑒𝑠)                        (6-6) 

 

𝐴𝑣𝑒𝑟𝑎𝑔𝑒𝑑 𝑃𝑆𝑁𝑅  =   (𝑠𝑢𝑚 𝑜𝑓 𝑃𝑆𝑁𝑅 𝑜𝑓 𝑒𝑎𝑐ℎ 𝑖𝑚𝑎𝑔𝑒 )/(𝑁𝑢𝑚𝑏𝑒𝑟 𝑜𝑓 𝑡𝑒𝑠𝑡𝑒𝑑 𝑖𝑚𝑎𝑔𝑒𝑠)                   

(6-7) 

 

𝐴𝑣𝑒𝑟𝑎𝑔𝑒𝑑 𝑀𝑆𝐸   =   ( 𝑠𝑢𝑚 𝑜𝑓 𝑀𝑆𝐸 𝑜𝑓 𝑒𝑎𝑐ℎ 𝑖𝑚𝑎𝑔𝑒 )/(𝑁𝑢𝑚𝑏𝑒𝑟 𝑜𝑓 𝑡𝑒𝑠𝑡𝑒𝑑 𝑖𝑚𝑎𝑔𝑒𝑠)                       

(6-8) 

𝐴𝑣𝑒𝑟𝑎𝑔𝑒𝑑 𝐶𝑅    =   ( 𝑠𝑢𝑚 𝑜𝑓 𝐶𝑅 𝑜𝑓 𝑒𝑎𝑐ℎ 𝑖𝑚𝑎𝑔𝑒  )/(𝑁𝑢𝑚𝑏𝑒𝑟 𝑜𝑓 𝑡𝑒𝑠𝑡𝑒𝑑 𝑖𝑚𝑎𝑔𝑒𝑠)                         

(6-9) 

 

6.4 Machine Learning and Deep Learning Techniques for Medical Image 

Compression: Models Overview, Experiments, and Findings 

6.4.1 Machine Learning Based Approaches for Medical Image Compression 

This section outlines the six primary forms of lossy image compression based on 

unsupervised learning: Principal Component Analysis (PCA), K-Means clustering, 

Convolutional Neural Networks (CNNs), Deep Convolutional Autoencoders (DCAEs), 

Autoencoders (AEs), and Variational Autoencoders (VAEs). 

6.4.1.1 Principal Component Analysis (PCA) 

PCA is a dimensionality reduction technique that aims to keep as much of the original 

variance as possible while converting high-dimensional data to a lower-dimensional 

representation. PCA can aid in picture compression by reducing the amount of data required 

to represent an image while retaining its essential components. 

6.4.1.2 K-Means 

One more method for image compression is k-means clustering. A procedure of 

unsupervised learning, called K-means clustering, divides data into a predefined number of 

clusters based on the degree of similarity of the data to one another. Clustering with various 

values of k will give varying outcomes in the output finally [79]. K-means can be used to 

combine similar colors and represent an image with fewer color clusters for image 
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reduction. 

6.4.1.3 Experiments and Findings Based on MXID Dataset 

6.4.1.3.1 First experiment: Unsupervised learning techniques using only one image 

In the first experiment, one single medical image out of the newly proposed MXID dataset 

in 256 x 256 PNG pixels was used for comparison between the PCA-based lossy compression 

approach and the K-means-based lossy compression approach. For the unusual application of 

pulmonary imaging, where strict isolation of structures within the lung is critical in diagnosis, 

an image used within this study Figure 6-3 was chosen as a sample to demonstrate the ability 

of our compression method. In trying to compress well and preserve fine features, the complex 

structures of lungs, including the blood vessels, airways, and lung tissues, must be handled 

carefully in the process of compression. This decision was made in order to draw attention to 

the strengths and weaknesses of the unsupervised learning strategies that were being 

considered. The quality of the compressed images was assessed using the MS-SSIM, 

compression ratio, PSNR, and MSE metrics. The performance of the PCA-based and K-means-

based approaches with different parameters is shown in Figure 6-1 and Figure 6-2, respectively.  

In medical image compression, choosing the ideal K value for K-means clustering is a 

challenging problem that varies from picture to image and is dependent on a number of 

variables. The results for the chosen image show the efficacy of the K-means-based approach 

with k=64 and the PCA-based method with the number of components set between 400 and 

500. These results are representative of the features of the selected image. 

Grayscale medical images, for example, found a compromise between compression 

efficiency and image quality at moderate K values like 16 to 32, but binary images, such as 

bone X-rays, profited from a K value of 2 for foreground-background separation in this 

proposed dataset. Even though this leads to bigger file sizes, higher K values (e.g., K=64 or 

more) may be chosen in situations where fine detail preservation is necessary (e.g., lung, 

abdomen). 
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Figure 6-1 Quantitative Assessment of PSNR, MSE, and MS-SSIM for the PCA-Based Lossy 

Compression Method. The Reported Outcomes Stem from Methodical Experimentation, Offering 

Insights into Performance Dynamics Across Different Principal Components [29] 

 

 

Table 6-1 Comprehensive Comparison of Single Image Compression Results for PCA-Based and K-

means-Based Lossy Compression [29] 

 

Methods Parameters MSE PSNR CR MS-SSIM 

PCA 

10 65.88 29.94 - 0.77 
50 25.34 34.09 - 0.83 
100 19.34 35.27 - 0.87 
200 16.71 35.90 - 0.89 
300 16.11 36.06 - 0.89 
400 15.97 36.10 - 0.89 
500 15.97 36.10 - 0.89 

K-means 

2 1062.82 17.87 99.15% 0.39 
4 187.88 25.39 98.31% 0.63 
8 46.94 31.42 96.61% 0.83 
16 11.40 37.56 93.22% 0.95 
32 3.09 43.23 86.44% 0.98 
48 1.47 46.46 79.66% 0.99 
64 1.00 48.11 72.88% 0.99 

 

The data presented in Figure 6-2 illustrate many performance indicators for the selected 

image. K-means outperformed Ahuja and Doriya's results in terms of image quality, as seen 

by greater PSNR and MS-SSIM values for k=64 [40]. In addition, Table 6-1 gives the complete 

findings of the initial experiments’ performances for both k-means and PCA.  
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Figure 6-2 Single-Image Evaluation of PSNR, MSE, and MS-SSIM for the Kmeans-Based Lossy  

Compression Method [29] 

 

 

 

 

 

(a)                (b)                                                (c) 

Figure 6-3 Result of Machine learning and Deep Learning algorithms (a) Input medical image 

considered for evaluation, (b) Compressed image using PCA-based lossy compression where 

components = 500, and (c) Compressed image using K-MEANS-based lossy compression where 

k=64 [29] 

 

6.4.1.3.2 Second Experiment: Unsupervised learning techniques using all images 

A total of 6869 medical images from the proposed MXID dataset in PNG format, sized 256 

x 256 pixels, are utilized in the second experiment to compare the performance of the various 

approaches. Due to available computing resources, i.e., GPU memory, the batch size is four. 

A normalization stage subsequent to rescales pixel values to an interval of [0, 1] so that the 

image dataset is well ordered and prepared for input. The image qualities compressed are 



Chapter 6. Implementation and Results 

 

87 

 

approximated in terms of the compression ratio, MS-SSIM, PSNR, and MSE. 

The results of the PCA study offer important new information about the effect of 

dimensionality reduction on the various quality measures.  Also, some PCA components' mean 

evaluation metric values (10, 50, 100, 150, 200, and 250) offer useful trade-offs between image 

quality and changes in the growth of compression levels. 

First, from Table 6-2 it can be seen that increased numbers of components result in improved 

mean PSNR, MSE, and MS-SSIM significantly, demonstrating superior reconstruction 

accuracy. Figure 6-4 illustrates trends against the number of components. There is consistent 

performance with better-quality images, indicated by superior PSNR, decreasing MSE, and 

extremely high structure similarity, displaying pixel-wise error was nil. 

 

Figure 6-4 Evaluation of PSNR, MSE, and MS-SSIM for the PCA-Based Lossy Compression 

Method, showcasing performance across varying principal components (10, 50, 100, 150, 250) [29] 

 

Table 6-2 Comparative Compression Results for K-means-Based Lossy Compression Methods Across 

Various Clustering Levels [29] 

Methods Parameters Mean MSE Mean PSNR Mean CR Mean MS-SSIM 

PCA 

10 83.56 29.25 - 0.77 
50 34.48 33.02 - 0.83 

100 30.29 33.59 - 0.85 
150 29.65 33.69 - 0.86 
250 29.56 33.70 - 0.86 

Kmeans 

2 756.90 19.60 99.11% 0.43 
4 156.78 26.34 98.23% 0.67 
8 36.99 32.60 96.46% 0.87 
16 9.42 38.53 92.91% 0.95 
32 2.57 44.16 85.82% 0.98 
48 1.28 47.19 78.73% 0.99 
64 0.81 49.16 71.64% 0.99 
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The results obtained for 250 elements were consistent with previous ones presented by 

Elamparuthi and were 33.70 dB in terms of PSNR. Consistency of these results with those 

presented by Elamparuthi et al. [80] suggests there is strong consistency between the two 

studies, which validates the given results in terms of validity and consistency. Moreover, 

experimental results indicate that the methods presented in [43], [81] demonstrated superior 

performance against numerous state-of-the-art compression techniques, particularly in 

segmentation, compression ratios, and overall performance. Even though X-ray scans come 

with a higher PSNR, they are less efficient when compressed. 

In medical image compression, k-means clustering is crucial; a rise in k number enhances 

grouping tightness, compression, and image quality. Higher values of PSNR and MS-SSIM as 

discovered in Table 6-2 indicate that this can potentially preserve very critical diagnostic 

information. We also selected the values for k in this data after careful consideration on image 

quality and compression in a hospital setting. 

K=2 means a binary option, which will produce a higher compression ratio but lower image 

quality as there are fewer intensity values. If we consider k=4.8, then we began seeing an 

increasingly better image of images, and we ended up compromising on image quality over 

compression efficiency that can save time and space but compromise diagnostically important 

information. 

Moving to k=16 improves picture quality by dividing the data into numerous clusters, 

resulting in greater MS-SSIM and PSNR values of 38.53 dB compared to [41], as well as lower 

MSE and CR values, indicating more dependable findings. Finally, k=64 provides the best 

amount of clustering among the tested options, if correct diagnosis is critical and there are 

sufficient storage or transmission resources. However, as the value of 'k' grows so does the 

processing time. Figure 6-5 demonstrates an apparent pattern between the various assessment 

metrics. 
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Figure 6-5 PSNR, MSE, and MS-SSIM Evaluation for Kmeans-Based Lossy Compression Method 

at Different Clustering Levels (k=2, k=4, k=8, k=16, k=32, k=48, k=64) [29] 

The following section will include an in-depth discussion of the deep learning models 

employed, and the training setup, methodologies, and parameters used to achieve optimal 

performance.  

6.4.2 Deep Learning Based Models for Medical Image Compression   

6.4.2.1 Overview of Deep Learning Models: AE, CNN, DCAE, VAE, and CAE 

6.4.2.1.1 Autoencoders (AEs)  

The suggested Autoencoder (AE) model, shown in Figure 6-6, follows the guidelines of a 

basic simple feed forward autoencoder and employs a single-channel grayscale input format 

with 256 × 256-pixel resolution, according to standards used in research such as [82]. The 

architecture begins by flattening the input images to a 1D vector and then two dense feature 

extraction layers of 128 and 64 units, respectively, are applied to this vector with the Rectified 

Linear Unit (ReLU) activation function, as demonstrated in Table 6-3. A popular selection for 

the imposition of non-linearity in neural networks for increased training speed and better 

generalization over the sigmoid function [83]. 

Simultaneously, compressed representation, as a 64-bit 1D vector, is calculated using two 

thick layers of 128 and 256x256x1. ReLU activation for the first layer and Sigmoid activation 

in the final layer are generally used to reconstruct images, as detailed in Table 6-4; it increases 

an image's clarity and gives a probabilistic explanation, where the output appears as the 

probability of the activation of the pixel [27]. With past experience incorporated into lessons 

learned from existing work, our approach effectively learns and representations salient features 

in input data and remedies some compression issues. 
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Figure 6-6 Architectural Diagram of the Proposed Autoencoder for Image Compression 

6.4.2.1.1.1.1 Autoencoder’s architecture details  

Encoder 

Table 6-3 AE Encoder’s Architecture Details 

Layer Type Output Shape Activation Description 

Input Input Layer (256, 256, 1) - Grayscale medical image input 

Flatten Flatten (65,536) - Converts 2D image into 1D vector 

Dense 1 Fully connected  (128) RELU Reduces dimensionality while 

retaining features 

Dense 2 Fully connected (64) RELU Compresses features into a 64-

dimensional latent space 

 

Decoder  

Table 6-4 AE Decoder’s Architecture Details 

Layer Type Output Shape Activation Description 

Input Input Layer  (64) - Grayscale medical image input 

Dense 3 Fully connected  (128) - Converts 2D image into 1D vector 

Dense 4 Fully connected  (65,536) RELU Reduces dimensionality while 

retaining features 

Reshape Reshape (256, 256, 1) RELU Compresses features into a 64-

dimensional latent space 

 

6.4.2.1.2 Convolutional Neural Network (CNN) 

As far as maintaining image quality without compromising file size, Convolutional Neural 

Network (CNN) image compression algorithms tend to perform better than conventional 

techniques such as JPEG. These kinds of CNN-based algorithms are especially ideal for those 
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applications that require high image integrity, e.g., commercial photo, remote sensing, and 

medical imaging. The developed CNN model is composed of an encoder and decoder. The 

encoder applied convolutional layers, batch normalization, and pool layers to reduce the 

dimension of the medical image presented in Table 6-5, before a follow-up dense layer which 

compressed the relevant features to a latent space with 128 dimensions. The compressed 

representation was then reconstructed by the decoder into a compressed picture using 

upsampling and convolutional layers, as shown in Table 6-6, with the fundamental architecture 

optimized to maintain significant spatial properties in medical images. 

 

6.4.2.1.2.1 Convolutional Neural Network (CNN) architecture’s details  

The architecture of the Convolutional Neural Network (CNN) encoder module is to 

effectively learn hierarchical features from the input data. The architecture consists of a 

sequence of convolutional layers, batch normalization layers, and max-pooling layers that 

work together to learn spatial hierarchies and down sample. Table 6-5 provides a 

comprehensive description of the encoder module, including the layer types, activation 

functions, feature maps, and convolutional kernel sizes applied at each level. 

 

Table 6-5 An Overview of the Encoder Component of the Convolutional Neural Network (CNN) 

NODE 
LAYER 

TYPE 

ACTIVATION 

FUNCTION 

FEATURE 

MAPS 

CONVOLUTIONAL 

KERNEL 

encoder input Input - - (256, 256, 1) 

conv2d Convolutional ReLU 64 (3,3) 

batch_norm 
Batch 

Normalization 
- - - 

max_pooling Max Pooling - - (2,2) 

conv2d_1 Convolutional ReLU 128 (3,3) 

batch_norm_1 
Batch 

Normalization 
- - - 

max_pooling_1 Max Pooling - - (2,2) 

conv2d_2 Convolutional ReLU 256 (3,3) 

batch_norm_2 
Batch 

Normalization 
- - - 

max_pooling_2 Max Pooling - - (2,2) 

flatten Flatten - - - 
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Encoder output Dense ReLU 128 - 

 

Table 6-6 Overview of the Decoder Component of a Convolutional Neural Network (CNN) 

NODE 
LAYER  

TYPE 

ACTIVATION 

FUNCTION 

FEATURE 

MAPS 

CONVOLUTIONAL 

KERNEL 

decoder_input Input - - (128,) 

dense_1 Dense ReLU 262144 - 

reshape Reshape - 
(32, 32, 

256) 
- 

conv2d_transpose_1 Conv2DTranspose ReLU 256 (3,3) 

up_sampling_1 UpSampling2D - - (2,2) 

batch_norm_3 
Batch 

Normalization 
- - - 

conv2d_transpose_2 Conv2DTranspose ReLU 128 (3,3) 

up_sampling_2 UpSampling2D - - (2,2) 

batch_norm_4 
Batch 

Normalization 
- - - 

conv2d_transpose_3 Conv2DTranspose ReLU 64 (3,3) 

up_sampling_3 UpSampling2D - - (2,2) 

batch_norm_5 
Batch 

Normalization 
- - - 

conv2d_transpose_4 Conv2DTranspose Sigmoid 1 (3,3) 

 

Table 6-6 is a representation of the decoder part of the Convolutional Neural Network 

(CNN) model. It shows the most significant layers, activation functions, and feature map 

transformations while decoding. The decoder builds the image from compressed shape 

systematically in layers such as dense, convolutional transpose, and up sampling to 

increase the resolution of output gradually up to the final image.  

 

6.4.2.1.3 Variational Autoencoder (VAE) 

Variational Autoencoder (VAE) is a generative model that combines autoencoder and 

probabilistic modeling components and is designed for feature representation and 

unsupervised learning purposes. It comprises of an encoder and a decoder, as shown in 

Figure 6-7. This concept gives the encoding process a probabilistic twist. Instead of 

immediately converting the input data into a fixed-size latent representation, VAEs 
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convert it to a probability distribution in the latent space. As a result, VAEs may generate 

varied and useful samples from data distributions while also performing exact 

reconstructions. Unlike traditional compression approaches that depend on heuristics, 

VAEs learn a probabilistic model of data distribution, allowing them to preserve 

important visual features while reducing pictures into compact latent representations. 

 

 

Figure 6-7 Variational Autoencoder (VAE) Architectural Overview [29] 

6.4.2.1.3.1.1 Variational Autoencoder (VAE) architecture’s details  

Encoder  

Table 6-7 VAE Encoder’s Details 

LAYER TYPE OUTPUT 

SHAPE 

ACTIVATION DESCRIPTION 

INPUT Input Layer (256 × 256) - Flattened grayscale image 

input 

DENSE 1 Fully 

Connected 

(1000) RELU Reduces dimensionality 

while extracting features 

DENSE 2 Fully 

Connected (μ) 

(32) - Mean (μ) of the latent space 

distribution 

DENSE 3 Fully 

Connected 

(logσ²) 

(32) - Log variance (logσ²) for 

reparameterization 

 

Latent Space  

Table 6-8 VAE Latent space’s Description 

OPERATION DESCRIPTION 
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REPARAMETERIZATION 

TRICK 

Samples latent vector z using 𝑧 =  𝜇 +  𝜖 ×

 𝜎, 𝑤ℎ𝑒𝑟𝑒 𝜖 ~ 𝑁(0,1) 

 

Decoder 

Table 6-9 VAE Decoder’s Details 

LAYER TYPE OUTPUT 

SHAPE 

ACTIVATION DESCRIPTION 

DENSE 

4 

Fully Connected (1000) RELU  Expands the latent vector 

DENSE 

5 

Fully Connected  (256 × 256) Sigmoid Outputs reconstructed image 

with pixel values between 0 

and 1 

Loss Functions  

Table 6-10VAE’s Loss Functions 

LOSS COMPONENT DESCRIPTION 

RECONSTRUCTION LOSS 

(MSE) 

Measures the difference between the original and reconstructed 

images 

KL DIVERGENCE LOSS Regularizes the latent space to follow a normal distribution 

 

6.4.2.1.4 Proposed Approach Deep Convolutional Autoencoder (DCAE) Architecture  

The deep convolutional autoencoder architecture was particularly intended to recreate X-

ray medical pictures while retaining essential diagnostic information. The architecture is made 

up of two connected components: the decoder and the encoder. Figure 6-8 shows how the 

encoder extracts detailed picture characteristics from the MXID dataset using a convolutional 

layer with a kernel size of 3 × 3, 128 filters, as demonstrated in Table 6-12, with a ReLU 

activation function. 

The decoder in Table 6-13, on the other hand, converts compressed information into a 

recognizable picture and has the same structure as the encoder [84]. Starts with a 3x3 kernel 

convolutional layer with 32 filters to reinforce the compressed representation and prepare data 

for subsequent upsampling, which is consistent with comparable techniques [85]. These 

'UpSampling2D' layers, which are 2x2 in size, efficiently recover spatial dimensions and 
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delicate characteristics by reversing the impact of maxpooling applied during encoding. The 

reconstruction is then reinforced by two further convolutional layers, each with 64 and 128 

filters, then ReLU activation is used to boost accuracy.    Lastly, the final convolutional layer 

uses the'sigmoid' activation function with a 3x3 kernel and one filter to make sure pixel values 

in the reconstructed image are in the correct range. Parametric Rectified Linear Unit (PReLU) 

and ReLU can be effective activation functions for image compression when used with CAEs. 

However, the ReLU activation function has been shown to possess the capability of speeding 

up deep learning training for quite some time now, and proven to outperform traditional 

sigmoid functions in terms of gradient dispersion [86]. Adoption of the PReLU function in this 

work has been motivated by the work of Cheng et al., [55]. The activation function has proven 

to be good at extracting additional information and producing improved results. 

This architecture effectively meets the criteria of X-ray medical image compression, 

successfully reducing dimensionality in the encoder while keeping essential diagnostic 

properties and speedily reconstructing pictures in the decoder. The whole architecture shown 

in Figure 6-8 demonstrates a strong dedication to minimize data loss during the compression 

phase, making it an attractive alternative for healthcare applications requiring high picture 

resolution and resource economy.  

 

 

Figure 6-8 Proposed Deep Convolutional Autoencoder (DCAE) Architecture for Image 

Compression Using TensorFlow and Keras 
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Table 6-11Pseudo code of the model’s training algorithm 

Algorithm 

• Initialize the weights and biases of the DCAE model using the initializer I. 

• Set the optimizer O with initial learning rate r. 

• For each epoch e = 1 to E do 

  a. Shuffle the dataset X. 

  b. For each batch x ⊂ X of size B do 

    i. Forward propagate the batch x through the encoder to obtain the latent 

representation z. 

    ii. Decode z using the decoder to generate the reconstructed output x̂. 

    iii. Compute the reconstruction loss L(x, x̂). 

    iv. Back-propagate the loss L through the network. 

    v. Update the weights and biases using the optimizer O. 

  c. Optionally adjust learning rate r based on schedule or validation performance. 

  d. Save model weights if current loss is the best so far. 

• End For (epochs) 

• Return the final reconstructed images X̂. 

 

6.4.2.1.4.1 Deep Convolutional Autoencoder (DCAE) Architecture’s Details 

A. With RELU Activation Function 

Encoder 

Table 6-12 DCAE’s Encoder Details 

Layer Type Output Shape Activation Description 

Input Input Layer (256, 256, 1) - Grayscale image input 

Conv 1 Convolutional (128 

filters, 3×3) 

(256, 256, 128) RELU Extracts low-level features 

Maxpool 1 Max Pooling (2×2) (128, 128, 128) - Reduces spatial dimensions 

Conv 2 Convolutional (64 filters, 

3×3) 

(128, 128, 64) RELU Extracts deeper features 

Maxpool 2 Max Pooling (2×2) (64, 64, 64) - Further reduces spatial 

dimensions 

Conv 3 Convolutional (32 filters, 

3×3) 

(64, 64, 32) RELU Encodes high-level 

representations 

Maxpool 3 Max Pooling (2×2) (32, 32, 32) - Latent representation 

 

Decoder 

Table 6-13 DCAE’s Decoder Details 
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Layer Type Output Shape Activation Description 

Conv 4 Convolutional (32 filters, 

3×3) 

(32, 32, 32) RELU Begins decoding process 

Upsmaple 

1 

UpSampling (2×2) 
(64, 64, 32) 

- Upscales spatial dimensions 

Conv 5 Convolutional (64 filters, 

3×3) 

(64, 64, 64) RELU Restores mid-level features 

Upsmaple 

2 

UpSampling (2×2) (128, 128, 64) - Further upscales 

Conv 6 
Convolutional (128 

filters, 3×3) 
 

(128, 128, 128) RELU Restores low-level details 

Upsmaple 

3 

UpSampling (2×2) (256, 256, 128) - Final upscaling 

Conv 7 Convolutional (1 filter, 

3×3) 

(256, 256, 1) Sigmoid Outputs reconstructed 

grayscale image 

 

B. With PRELU Activation Function 

Similar to the DCAE model the only changeset is in the activation function (PRELU). 

 

6.4.2.1.5 Convolutional Autoencoder (CAE) Architecture  

a) Encoder :  

1. Convolutional Layers: The encoder starts with a 256 x 256 grayscale input 

image (single channel) and goes on to use three convolutional layers, Table 6-14 

presents layer type, output shape, activation function, and description of the 

encoder. The first layer has 32 filters with a 3 × 3 kernel and ReLU activation 

function. The second layer has 64 filters with the same kernel and activation 

function, and the third layer has 128 filters with the same kernel and ReLU 

activation function. In addition, the padding capability is employed to preserve 

the original dimensions without compromising the necessary picture elements. 

2. MaxPooling Layers: Following each convolutional layer, a 2 × 2 Maxpooling 

layer is used to minimize spatial dimensions while preserving important x-ray 

picture properties. 
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3. Global Average Pooling: This is a critical layer in this autoencoder. After the 

last convolutional layer, this layer converts the feature maps into a single vector 

to minimize overfitting, reduces the number of parameters, and improves the 

model's generalizability. 

4. Dense Layer: The output of the global average pooling layer is then passed 

through a dense layer of 128 units, resulting in the encoded output. 

Table 6-14CAE Encoder’s Details 

Layer Type Output 

Shape 

Activation Description 

Input Layer Input (256 × 256 × 1) (256, 256, 1) - Grayscale X-ray image 

Conv 1 
Conv2D (32 filters, 3×3) 

(256, 256, 

32) 
RELU 

Extracts low-level 

features 

Maxpooling 

1 
MaxPooling2D (2×2) 

(128, 128, 

32) 
- 

Reduces spatial 

dimensions 

Conv 2 
Conv2D (64 filters, 3×3) 

(128, 128, 

64) 
RELU Extracts deeper features 

Maxpooling 

2 
MaxPooling2D (2×2) (64, 64, 64) - 

Further reduces spatial 

dimensions 

Conv 3 
Conv2D (128 filters, 3×3) (64, 64, 128) RELU 

Extracts high-level 

representations 

Maxpooling 

3 
MaxPooling2D (2×2) (32, 32, 128) - Final spatial reduction 

Global AVG 

Pooling 
GlobalAveragePooling2D (128) - 

Reduces overfitting, 

improves generalization 

Dense Layer Dense (128 units) (128) - Encoded latent space 

 

b) Decoder: 

1. Reshaping (4 × 4 × 8): Following the dense layer, a reshaping layer is required 

to prepare the encoded output for upsampling, as demonstrated in Table 6-15. 

2. Convolutional and UpSampling Layers: It is composed of up of three 

convolutional layers (128, 64, and 32) with a ReLU activation function and 

upsampling, which mimic the encoder's structure.  



Chapter 6. Implementation and Results 

 

99 

 

3. Output Layer: This layer consists of a single convolutional filter with a 3 × 3 

kernel and utilizes a sigmoid activation function. 

Table 6-15 CAE Decoder’s Details 

Layer Type Output 

Shape 

Activation Description 

ReshapeLayer Reshape (4 × 4 × 8) (4, 4, 8) - Prepares for upsampling 

Conv 4  Conv2D (128 filters, 

3×3) 
(4, 4, 128) RELU Starts decoding 

Upsampling 1 
UpSampling2D (2×2) (8, 8, 128) - 

Upscales spatial 

dimensions 

Conv 5 Conv2D (64 filters, 

3×3) 
(8, 8, 64) RELU 

Intermediate 

reconstruction 

Upsampling 2 UpSampling2D (2×2) (16, 16, 64) - Further upscaling 

Conv 6 

Conv2D (32 filters, 

3×3) 

(16, 16, 32) RELU Restores finer details 

Upsampling 3 
UpSampling2D (2×2) 

(256, 256, 

32) 
- Final upscaling 

Output Layer 
Conv2D (1 filter, 3×3) (256, 256, 1) Sigmoid 

Generates final 

reconstructed image 

 

This convolutional autoencoder was designed to take an original picture, compress it into a 

lower-dimensional latent space in order to retain all of the critical data, and then rebuild the 

encoded image as closely as possible to the original while maintaining quality and minimizing 

size. Figure 6-9 illustrates this architecture.  
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Figure 6-9 Convolutional Autoencoder Architecture for X-ray Medical Image Compression 

 

6.4.2.1.6 RLE 

The RLE architecture functions in the following way: 

Starting from a 2D grayscale image, as illustrated in Figure 6-10, the encoding transforms 

it into a 1D array for easier processing. The 1D array is then compressed using RLE, resulting 

in a list of value/count pairs. The compressed data is decompressed back into a 1D array and 

reshaped into its original 2D grayscale picture format. 

 

Figure 6-10 RLE Architecture 

6.4.2.1.7 Hybridization of both CAE and RLE Techniques (CAE-RLE) 
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Figure 6-11 Hybridization of the CAE-RLE for medical image reconstruction 

 

6.4.2.1.7.1 CAE-RLE Architecture Details 

The purpose of this architecture to reduce the dimensionality of the image while maintaining 

the critical features. This hybrid approach presented in Figure 6-11 was selected with the aim 

of achieving higher compression efficiency in comparison with CAE and RLE individually 

while preserving important regions and key features of the medical images. If we assume that 

latent space has several repeated values, RLE can reduce the size of the compressed latent 

vector by encoding only the value and its count rather than storing each pixel value 

individually. Applying RLE after the CAE encoding process ensures that no important 

information is lost in the compression process as the loss of small details impact diagnosis 

accuracy, as long as the latent space has sufficient redundancy. Additionally, our aim is to 

reduce file size while obtaining an optimized compression, which means to maximize data size 

reduction without sacrificing image quality.  

Although the hybridization of CAE and RLE is theoretically sound, poor quality 

reconstructed images may arise due to lack of sufficient redundancy from the latent vectors 

that were generated by the CAE; Also, the latent space could be varied and dense, in which the 

RLE might not perform as well as expected, or even worse; it might remove critical information 

leading to blurry reconstructions. Additionally, the decoding process in this architecture may 

not be able to recover the original image quality from the compressed latent space if the RLE 

has compressed the latent space in an unsuitable way, which impact the reconstructed image 

quality, Table 6-16 Present a comparative discussion of the methods: CAE, RLE, CAE-RLE, 

respectively. 

In conclusion, this hybrid CAE-RLE architecture presents a limitation in this research, while 
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the CAE provided a good balance between image quality and compression. In addition, RLE 

works effectively for repetitive data and given a good result in comparison to the CAE-RLE 

outcomes in terms of image quality. Overall, this hybrid technique faces challenges due to 

mismatches of handling the latent space in each method. To improve this hybrid CAE-RLE 

method further optimization of the latent space representation or switching to other hybrid 

compression technique could be more suited for the preservation of the crucial information in 

the medical image compression domain. 

Table 6-16 Comparison of the AE, RLE, and AE-RLE Techniques 

Features CAE RLE CAE-RLE 

Compression Type Lossy Lossless Hybrid (Lossy+Lossles) 

Compression 

Effectiveness 
Moderate to High 

Good for redundant 

Patterns Only 
 

Visual Quality Minor Quality Loss Preserved Exactly Noticeable Quality Loss 

Suitability for Medical 

Imaging 
Risk if overly lossy Integrity Preserved 

Blanced : AE preserves 

crucial features, while 

RLE can cause 

distortion 

Speed 
Requires Time for The 

Training Process 
Very Fast 

Moderate (Training + 

fast encoding) 

Storage Saving Depends on Latent Size 
Depends on Pixel 

redundancy 

Generally best savings 

due to double-stage 

reduction 

 

6.4.2.2 Hyperparameters Configuration 

Table 6-17 outlines the hyperparameter settings used across various deep learning 

techniques used in this study. The parameters include the initial learning rate, batch size, 

epochs, number of trainable parameters, optimizer, error function, and activation functions. 

The configuration choice is critical in optimizing the performance of the specific models, and 

the table specifies the specific setting used for Autoencoders (AE), Convolutional Neural 

Networks (CNN), Variational Autoencoders (VAE), Deep Convolutional Autoencoders 
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(DCAE), and Convolutional Autoencoders (CAE). 

-Adam Optimizer: The training process employed the Adam optimizer, which is a 

stochastic gradient descent optimization algorithm that learns the learning rate for each 

parameter independently. Adam is an extension of the advantages of two very successful 

stochastic gradient descent extensions. Adam estimates the first moment (mean) and second 

moment (uncentered variance) of the gradients for each parameter in order to create adaptive 

learning rates. 

𝑚𝑡 =  𝛽1𝑚𝑡−1 + (1 − 𝛽1)𝑔𝑡             (6-10) 

𝑣𝑡 =  𝛽2𝑣𝑡−1 + (1 − 𝛽2)𝑔2
𝑡
            ( 6-11) 

Where: 

• β1 and β2 are exponential decay rates for the moment estimates. 

In this work, the Adam optimizer was initialized with a learning rate of 0.001, which was an 

optimal balance between training speed and stability. 

 

Table 6-17 Hyperparameters Settings across AE, CNN, VAE, DCAE, and CAE models   

Technique 

Used 

Initial 

Learning 

Rate 

Batch 

Size 
Epochs 

Trainable 

Parameters 
Optimizer 

Error 

Function 

Activation 

Function 

Autoencoder 

(AE) 
0.001 8 

Fixed 

in 50 
16859456 

Adam 

Optimizer 

Mean 

Square 

Error 

(MSE) 

RELU, 

Sigmoid 

Convolutional 

Neural 

Network 

(CNN) 

0.001 4 
Fixed 

in 50 
1008449 

Adam 

Optimizer 

Mean 

Square 

Error 

(MSE) 

ReLU 

Variational 

Autoencoder 

(VAE) 

0.001 8 
Fixed 

in 100 
- 

Adam 

Optimizer 

Mean 

Square 

Error 

(MSE) 

 

Deep 

Convolutional 

Autoencoder 

(DCAE) 

0.001 4 
Fixed 

in 100 
12156609 

Adam 

Optimizer 

Mean 

Square 

Error 

(MSE) 

ReLU and 

PReLU 

Convolutional 

Autoencoder 

(CAE) 

0.001 4 
Fixed 

in 200 
332801 

Adam 

Optimizer 

Mean 

Square 

Error 

(MSE) 

RELU, 

Sigmoid 

 

The following tests were carried out using Python 3.7.16, TensorFlow 2.7.0, and Keras API 

on GPU NVIDIA and 16 GB RAM. For each training iteration, we kept the best outputs, as 

well as the improved DCAE model weights and biases, using Keras callbacks such as 



Chapter 6. Implementation and Results 

 

104 

 

ModelCheckpoint. To stress the capability of the autoencoder to learn effective latent 

representations from medical images, we conducted an experiment where the model was 

trained under various settings: fifty epochs, one hundred epochs... These experiments were 

performed with consistent training parameters to investigate the improvement in performance 

with time. In the following section, the results of reconstruction achieved by our model, 

initially trained on our well-curated X-ray dataset, are presented. 

 

6.4.2.3 Experiments and Findings Based on MXID Dataset 

6.4.2.3.1 Third Experiment: Deep Learning Models: CNN, AE, DCAE, and VAE 

- Autoencoder (AE): The implementation of the autoencoder on the MXID dataset yielded 

a PSNR of 37.61 dB, an MSE of 0.014, and an MS-SSIM of 0.61 in [29], as shown in Figure 

6-12. These values indicate a significant loss of detail, which is crucial for medical imaging 

applications. While the primary structural integrity of the images remains intact, as depicted 

in Figure 6-20. 

   

Figure 6-12 MXID AE’s Results: MSE, MS-SSIM, PSNR [29] 

 

- Convolutional Neural Network (CNN): The Convolutional Neural Network (CNN) 

model was initially trained on the proposed MXID dataset for 21 epochs, which yielded high 

performance values. The model achieved a mean squared error (MSE) of 0.006, a maximum 

signal-to-noise ratio (PSNR) of 41.43 dB, and a mean structural similarity index measure (MS-

SSIM) of 0.77, as shown in Figure 6-13. These values reflect improved performance compared 

to both the Variational Autoencoder (VAE) and the proposed Autoencoder (AE) models. 

Figure 6-20 show the reconstructed pictures employing the CNN, which have improved 

visual quality compared to previous methodologies [52], with the combined CNN and wavelet 

transformation achieving a PSNR of 39.59 dB. On the other hand, [51] offered a region-based 

segmentation and optimization approach that combined fuzzy C-means with hybrid Grey Wolf 
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Optimization. This model had a higher PSNR value, indicating that the segmentation method 

maintained diagnostically essential areas critical to healthcare experts. 

Deep learning image compression studies have explored a number of architectures for 

enhanced image quality and efficient compression ratios. In [87], a dual CNN architecture was 

proposed, where ComCNN learns a compressed image representation for image compression, 

and RecCNN generates high-fidelity reconstruction in decompression. It demonstrated 

considerable improvement over traditional compression methods by successfully mitigating 

artifacts at the same bit rates, outperforming standard image codecs. Similarly, [34] proposed 

a convolutional RNN model which achieved a 4.85 dB improvement in Peak Signal-to-Noise 

Ratio (PSNR) and a 4.86% improvement in Structural Similarity Index (SSIM) compared to 

the LSTM Conv model of Toderici et al. [88] for an 8x compression ratio on 256 × 256 images. 

Additionally, their method achieved a 9.85 dB gain in PSNR over the JPEG-2000 standard, 

which has particular significance in medical imaging. By way of comparison, the proposed 

CNN model performed even better, achieving an MSE of 0.006, a PSNR of 41.43 dB, and an 

MS-SSIM of 0.77, outperforming the earlier reported results, particularly in PSNR. 

Additionally, a comparative visual image analysis is provided by K-Means, PCA, and CNN, 

and some features are referred to, as illustrated in Figure 6-20. However, due to the high 

contrast, K-Means loses some of the color information and can no longer preserve small image 

details. Moreover, images generated based on CNN reconstruction were discovered to be 

blurry, presenting a potential drawback in preserving critical areas. Although the higher k value 

produces a more precise replication, fuzziness in CNN-painted images is a sign that there is a 

need for adjustment to increase the network's ability to preserve details in the course of 

compression. 

 

Deeper Convolutional Neural Networks (CNNs) are effective in learning hierarchical 

features, enhancing the retention of fine details when compressing images. However, with the 

thoughtfully balanced architecture of the proposed moderate-depth CNN, experiments proved 

that there were constraints in the faithful preservation of complex structures critical in medical 

imaging. The outcome depicts the trade-off between network depth and detail retention. Apart 

from this, other primary architectural features such as Rectified Linear Unit (ReLU) 

activations, batch normalization, and convolutional kernels also contributed significantly to 

model performance regarding compression. Nevertheless, the reconstructed images could not 

achieve the level of desired quality. To counter these problems, future work will study 
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enhancements in the network architecture, loss function optimization, and the inclusion of 

more advanced post-processing techniques. These improvements aim at blurriness elimination 

and overall improvement of compressed medical X-ray image quality. 

 

 

Figure 6-13 Evaluation of Mean Squared Error (MSE), Multi-Scale Structural Similarity Index 

(MS-SSIM), and Peak Signal-to-Noise Ratio (PSNR) depicting the performance dynamics of the 

CNN model over 21 training epochs [29] 

 

Table 6-18 Comparative Compression Results for Various Deep Learning Models [29] 

Model Epochs MSE PSNR MS-SSIM 

AE 35 0.014 37.61 0.61 

VAE 25 - 21.64 0.75 
CNN 21 0.006 41.43 0.77 

Proposed 
DCAE(RELU) 

40 0.0004 46.37 0.98 

Proposed 
DCAE(PRELU) 

51 0.0002 46.78 0.99 

 

Table 6-18 shows that the training process results in a decreased loss of 0.014, an increased 

MS-SSIM of 0.61, and a higher PSNR value of 37.61 dB when compared to the Mishra et al. 

approach [27][48] of 35.91 dB, the Juliet et al. approach [47] of 37.02 dB, and the Senapati et 

al. approach [46] of 23.91 dB. Figure 6-14 provides more information on PSNR, MS-SSIM, 

and MSE details. This means that the autoencoder is effectively learning to compress and 

reconstruct pictures while retaining their structural features. However, as seen in  

Figure 6-15 the compressed pictures were fuzzy due to a lack of finer details. 
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Figure 6-14 Evolution of Mean Squared Error (MSE), Multi-Scale Structural Similarity Index 

(MS-SSIM), and Peak Signal-to-Noise Ratio (PSNR) across 35 epochs for the Autoencoder Model 

Performance [29] 

 

- Variational Autoencoder (VAE): Variational Autoencoder (VAE) architecture was also 

employed for the proposed Medical X-ray Imaging Dataset (MXID), which is made up of fully 

linked encoding and decoding layers that were trained for 25 epochs with an early stopping 

strategy to reduce overfitting. The data suggest picture preservation issues, which result in 

early termination due to minor reductions in validation loss, as seen in  

Figure 6-15. Furthermore, we ran the trained VAE model on a variety of pictures from the 

dataset, producing and comparing PSNR and MS-SSIM metrics for each. The findings indicate 

that Figure 6-20 produced the best possible outcomes. Furthermore, Ballé et al. [89] and Liu et 

al. [49] produced exceptional findings that outperformed our investigation, as shown in Table 

6-18. 

 

 

Figure 6-15Evaluation of Mean Squared Error (MSE) Loss for VAE Compression Technique [29] 

 

- Deep Convolutional Autoencoder (DCAE):  The deep convolutional autoencoder 

(DCAE) uses a symmetric encoding-decoding structure that is optimized to learn a compact 

representation of input images in a manner that ensures high-quality reconstruction. The 
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experimental results demonstrate that the method performs higher than existing deep learning-

based methods for X-ray medical image reconstruction. The model achieved a loss of 0.002, 

structural similarity index (MS-SSIM) of 0.99, and peak signal-to-noise ratio (PSNR) of 46.78 

dB after 51 training epochs with a batch size of four. The outcome indicates that there is 

negligible loss of diagnostic information, with the reconstructed images being highly similar 

to the originals. The use of the PReLU activation function played a major role in the 

performance of the model, which performed better than the ReLU activation function, as 

illustrated in Figure 6-16. However, it enables one to effectively build up variances of input 

data with better reconstruction quality across different classes of anatomy. For this reason, the 

DCAE model effectively preserved essential information that is vital to accurate medical 

diagnosis in different body areas, each presenting a unique combination of challenges 

concerning anatomical complexity, diagnostically relevant regions, and image characteristics, 

ranging from dental radiographs to the lumbar spine and cervical spinal column. An example 

representative is shown in Figure 6-17. The model was successful. These images show the well-

preserved vertebral elements, intervertebral discs, and nerve elements. In addition, it is higher 

than CNN in preserving significant regions by maintaining structural information such as 

organs, tissues, and bony structures from lungs and abdomen. 

Furthermore, the ability of the model to project finer details within bone architecture, joint 

compartments, and soft tissue was crucial for diagnostic accuracy in orthopedic examinations 

and disorders related to the joints. Where skeletal morphology was dense, say, in the skull, leg, 

and arm, the DCAE ensured accurate preservation of details necessary for effective clinical 

use. Preservation of bone density, facial structure, and musculoskeletal elements demonstrates 

the adaptability of the DCAE to disparate imaging circumstances. 

 

  
                                  MSE (RELU)                                     MS-SSIM (RELU)                                  PSNR (RELU) 
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           MSE (PRELU)                                          MS-SSIM (PRELU)                                        PSNR (PRELU) 

Figure 6-16 Evaluation of DCAE Performance: Comparative Analysis of MSE, PSNR, and MS-

SSIM with Both Activation Functions [29] 

 

 

                                                Original Image           RELU Function         PRELU Function 

 

Original Image RELU Function PRELU Function 

 

Original Image RELU Function PRELU Function 

Figure 6-17 Deep Convolutional Autoencoder Results from the MXID Dataset comparing the 

impact of ReLU and PReLU activation functions on the compressed images: Representative 

Samples [29] 

 

6.4.2.3.2 Fourth Experiment with Proposed Convolutional Autoencoder (CAE) 

a) MXID DATASET 

The proposed CAE structure is really designed for compression of medical images, 

maintaining necessary feature retention important in diagnosis in the clinical setting but 
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minimizing loss of information. 

In MXID dataset, performance is exceptional where the model achieved a PSNR of 47.318 

dB, MSE 0.00008, and MS-SSIM of 0.997 at 94 epochs. This is higher than the deep 

convolutional autoencoder of [29], which had a PSNR of 46.78 dB, an MSE of 0.0002, and an 

MS-SSIM of 0.99 at 51 epochs. The outcomes are shown in Error! Reference source not found. 

and Figure 6-30 which closely approximate those of the OPEN-I dataset. This very high 

reconstruction accuracy ensures that the structural integrity of the original images is adequately 

maintained, which is essential for precise medical diagnoses. Additionally, the model's 

effectiveness and robustness are further cemented by its consistent performance across 18 

distinct anatomical classes, each with different structural details and complexities. 

 

 

Figure 6-18The CAE model's performance trends on MXID dataset were evaluated using Mean 

Squared Error (MSE), Multi-Scale Structural Similarity Index (MS-SSIM), and Peak Signal-to-

Noise Ratio (PSNR) 

Figure 6-19 shows how the model perfectly reconstructs various parts of the body, including 

abdominal regions, small vessels, tissue differentiation, bone structures, and fine details in 

more complex regions such as organ boundaries, intervertebral discs, dental images with 

visible fillings, and other critical information. These results demonstrate that the model 

collected critical diagnostic information while maintaining a balance between picture fidelity 

and compression efficiency for reliable clinical interpretation over a wide variety of anatomical 

locations. 

Original image Reconstructed image Original image  
Reconstructed image 
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Figure 6-19 Representative Samples from The MXID Dataset Using CAE Compression Process 
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Figure 6-20 A comprehensive comparison of sample image reconstructions is presented, featuring results obtained through K-Means, PCA, Autoencoder, 

CNN, VAE, DCAE, and CAE Methods. The original image is juxtaposed with the corresponding reconstructed images, respectively [29] 

Original Image K-means PCA Autoencoder CNN VAE DCAE CAE 
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6.4.2.4 Generalization Across the Additional Datasets 

6.4.2.4.1 Fifth Experiment: Performance of DCAE, AE, and CNN on OPEN-I Dataset 

and JSRT Dataset 

6.4.2.4.1.1 Performance on OPENI Dataset 

- deep convolutional autoencoder (DCAE): The DCAE algorithm performs better than 

other algorithms on the OPEN-I dataset, with a loss of just 0.0001, and in the MXID and 

JSRT datasets, the loss is higher. Moreover, a PSNR of 47.14 dB indicates superior 

visual quality and superior anatomical area preservation, and an MS-SSIM of 0.99 

indicates very high similarity between the input and reconstructed images, as shown in 

Figure 6-27. 

 

Figure 6-21 OPEN-I DCAE’s Results: MSE, MS-SSIM, PSNR 

- Autoencoder (AE): On 21 epochs, the autoencoder achieved 39.07 dB PSNR, 0.011 

MSE, and 0.70 MS-SSIM on the OPEN-I database, higher than on MXID and JSRT 

databases. This is equivalent to higher compression quality and higher generalizability, 

particularly on larger databases. This improved performance illustrates the ability of the 

model to maintain important image details without sacrificing efficient compression, and 

this is a very promising approach to medical imaging where both diagnostic relevance 

and storage economy are required. 

  

Figure 6-22 OPEN-I AE’s Results: MSE, MS-SSIM, PSNR 

- Convolutional Neural Network (CNN): Similarly, Similarly, applying the CNN to 

the OPENI dataset yielded an MSE of 0.004, a PSNR of 42.40 dB, and an MS-SSIM of 



Chapter 5. Implementation and Results 

 

114 
 

0.80, indicating superior performance compared to the MXID and JSRT findings shown 

in Table 6-19. 

   

Figure 6-23 OPEN-I CNN’s Results: MSE, MS-SSIM, PSNR 

6.4.2.4.1.2 Performance on JSRT Dataset 

- Deep Convolutional AutoEncoder (DCAE): The DCAE performed well on the JSRT 

dataset, with a PSNR of 45.37 dB, an SSIM of 0.97, and an MSE of 0.001 after 21 epochs 

as depicted in Figure 6-25. However, image quality was slightly lower compared to the 

MXID and Open-I datasets due to the JSRT imaging conditions and smaller dataset size, 

as shown in Figure 6-28. Nonetheless, the slight variances in SSIM and compression 

metric values suggest that dataset characteristics such as size, variability, and picture 

quality influence the model's performance. 

 

Figure 6-24 JSRT DCAE’s Results: MSE, MS-SSIM, PSNR 

 

- Autoencoder (AE): Moving on to the autoencoder's performance on the JSRT dataset, 

after 18 epochs, the model achieved a slightly higher PSNR of 37.84 dB than MXID, an 

MSE of 0.014, which is similar to the autoencoder's MXID results, and an MS-SSIM of 

0.77, which is the highest value compared to the two other datasets, indicating that the 

original and reconstructed images are more similar. 
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Figure 6-25  JSRT AE’s Results: MSE, MS-SSIM, PSNR 

 

- Convolutional Neural Network (CNN): The model attained an MSE of 0.016, PSNR 

of 36.96 dB, and MS-SSIM of 0.71 at 35 epochs, as indicated in Table 6-19. The 

performance is the poorest across the tested datasets and indicates poor performance of 

the CNN on the JSRT dataset compared to MXID and OPEN-I. The lower and more 

volatile the dataset, i.e., more noisy or lower image resolution, for example, it influenced 

the model in terms of how generalizable or how much detail it can retain critical to 

accurate diagnosis. Smaller datasets will easily overfit, particularly with deep 

convolutional models with high parameters. While autoencoders (AEs) learn in terms of 

less complex features using less diversified data, feature learning in CNNs is good but 

utilizes larger datasets for better generalization. DCAE model incorporates the strengths 

of both CNNs and AEs but on the JSRT database performed better feature extraction 

than AEs but was also prone to overfitting. 

 

Figure 6-26 JSRT CNN’s Results: MSE, MS-SSIM, PSNR 

6.4.2.4.1.3 Discussion 

The performance of the various approaches on the three X-ray datasets is much better on 

larger and diverse datasets such as MXID and OPEN-I, indicating their clinical use potential. 

However, differences in the quality of reconstructed images across datasets indicate that the 

models are sensitive to dataset-specific properties, i.e., size, diversity, and inherent variations. 

These allow the models to pick up more features when trained on larger datasets. In addition, 
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the PSNR and MS-SSIM values of the MXID dataset reveal high-quality reconstructed images 

in the three models (AE, CNN, and DCAE). The models are able to preserve fine structural 

details in 18 anatomical regions, such as key features including bone contours, nerve structures, 

joint spaces, skeletal and vertebral details, intervertebral discs, organs, tissues, and 

cardiovascular features. This suggests a fair trade-off between image quality maintenance and 

compression efficiency for multi-body part imaging datasets. The visual side-by-side 

comparison of such results is given in Figure 6-20, Figure 6-27, Figure 6-28. 

The OPEN-I chest X-ray dataset indicates marginally greater PSNR values for all three deep 

learning models because it is larger in scope and has more extensive training data. This allows 

the models to learn more precise features compared to anatomy of the chest. Big datasets also 

lower the risk of overfitting and enhance the quality of reconstructed images. 

In contrast, the JSRT chest X-ray small dataset produces lower PSNR values than the 

OPEN-I and MXID datasets for the three models (AE, CNN, and DCAE). The small dataset 

size restricts the model from extracting very little diagnostic information. The variation of 

image quality in the dataset causes low PSNR and MS-SSIM values. The blurring induced 

within reconstructed images by this effect can hide initial symptoms of disease like pneumonia 

or fibrosis. The simultaneous decrease in contrast between such tissues can decrease detection 

of minute differences in tissue density, which is critical to generating accurate medical 

diagnoses. 

 

Table 6-19 DCAE, AE, CNN Performance Comparison on: MXID vs. OPEN-I vs. JSRT 

Applied 

Technique 
Dataset Epochs MSE PSNR 

MS-

SSIM 

DCAE 

MXID 51 0.0002 46.78 0.99 

OPEN-I 30 0.0001 47.14 0.99 

JSRT 21 0.001 45.37 0.97 

AE 

MXID 35 0.014 37.61 0.61 

OPEN-I 21 0.011 39.07 0.70 

JSRT 18 0.014 37.84 0.77 

CNN 
MXID 21 0.006 41.43 0.77 

OPEN-I 35 0.004 42.40 0.80 
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JSRT 35 0.016 36.96 0.71 

 

Traditional methods, such as JPEG and JPEG2000, are widely used for medical imaging 

compression due to their computational efficiency; thus, the JPEG method may achieve higher 

compression ratio values despite the noticeable loss of crucial details, which is critical for the 

diagnosis process by specialists.  On the other hand, JPEG2000 may preserve better quality at 

high compression levels; it also outperforms JPEG in terms of image quality preservation [70], 

while balancing image fidelity and storage requirements; however, it requires more processing 

power and is still struggling with complex features and details captioning when compared to 

deep learning techniques that offer potential preservation while achieving high compression 

ratios.  

Besides, the application of deep learning on MXID and other datasets is confronted with 

great challenges.  MXID dataset consists of several parts of the human body with various 

characteristics, luminosity, and contrasts. Nevertheless, while the autoencoder reduces 

dimensions and noise, it cannot obtain intricate features for reconstructed medical images, 

which limits the process of capturing the details in the various anatomical areas. 

Although CNNs are superior in extracting intricate features, they need more extensive 

datasets to avoid overfitting and produce better-quality reconstructed images. As indicated in 

Figure 6-28, the CNN model performs poorly with the JSRT dataset, generating extremely 

blurred images with no discernible anatomical details, reflecting its inability to capture fine 

structures. 

Conversely, the DCAE model generates high-quality compression, particularly excelling on 

the OPEN-I dataset, with reconstruction error minimized and fine details well-preserved, 

enhancing diagnostic accuracy. While it is effective in encoding structural information with 

convolutional layers and is robust to noise—both desirable in medical imaging—DCAEs are 

extremely sensitive to the quality of training data. When the data set contains artifacts or noise, 

these defects are maintained in the reconstructed images, which can affect diagnostic 

reliability. Large high-resolution data sets' training for DCAEs is also computationally costly 

and time-consuming. 

These findings demonstrate the promise of many methodologies across various complicated 

and bigger medical imaging datasets, while also highlighting limits with smaller dataset 

features such as noise levels, particularly in the JSRT dataset. 
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Figure 6-27 CNN vs. AE vs DCAE Results on OPEN-I Dataset 
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Figure 6-28 CNN vs. AE vs DCAE Results on JSRT Dataset 

6.4.2.4.2 Sixth Experiment: Comparative study of CAE vs. RLE on Open-I and JSRT 

datasets 

a) OPENI DATASET 

Table 6-20 shows that the compression performance of the OPEN-I dataset was better than 

that of the MXID and JSRT datasets. With a significantly reduced MSE value of 0.00004, 

PSNR of 47.528 dB, and MS-SSIM of 0.998 at 58 epochs, as shown in Figure 6-29, indicating 

that the reconstructed image was of extremely high quality, had excellent detail preservation, 

and no distortion. 

Figure 6-30 illustrates how the quality, diversity, and resolution of OPEN-I images result in 

improved reconstruction. Furthermore, the application of CAE architecture is most appropriate 

for this dataset, with minimal fine feature loss, allowing data reduction and image significant 

information for precise diagnosis, and an optimal image size for economical storage and 

transfer. 

 

  

Figure 6-29 Assessment of Mean Squared Error (MSE), Multi-Scale Structural Similarity Index 

(MS-SSIM), and Peak Signal-to-Noise Ratio (PSNR) illustrating the performance trends of the 

CAE model on OPEN-I dataset 

The OPEN-I dataset exhibits excellent preservation in the reconstructed pictures, with 

minimum loss of information in the ribs, lung arteries, and heart veins apparent, as well as in 

the broncho-vascular continuity, which is critical for diagnosis accuracy and precise 
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evaluation. Overall, this CAE approach shows a significant reduction in picture size while 

maintaining image quality and accurate, trustworthy diagnosis. 

Figure 6-30 Outstanding demonstration of CAE's implementation on the OPEN-I dataset 

b) JSRT DATASET 

The model performance in the JSRT dataset is poorer than in the MXID and OPEN-I 

datasets, indicating loss of partial image quality, as shown in Table 6-20. However, the results 

indicate minor loss with an MSE of 0.00013, PSNR of 47.109 dB, and an MS-SSIM score of 

0.997 after 45 iterations, as seen in Figure 6-31, such that the compression process achieved a 

decent visual quality that was quite close to the original. Furthermore, these results show 

equality of original and compressed image quality with diagnostic regions preserved for 

effective medical diagnosis. 

 

Figure 6-31 The performance trends of the CAE model were demonstrated through the evaluation 

of Mean Squared Error (MSE), Multi-Scale Structural Similarity Index (MS-SSIM), and Peak 

Signal-to-Noise Ratio (PSNR) on JSRT dataset 

 

Original image Reconstructed image Original image  
Reconstructed image 
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The visual outcome of the radiologists' and clinicians' diagnosis depends on the complexity 

of the case of the patient. Overall, anatomical structures are generally maintained in 

compressed images, as one can observe from Figure 6-32. Diagnosis would need more of the 

finer details to be maintained. Crucial structures such as sharp edges of rib cages, vascular 

veins in lungs and heart, pulmonary nodules, and tissue density are deformed in compressed 

images. This blurring of acuities can impair an expert's diagnostic accuracy by leading to 

overlooking findings, particularly in high-precision applications such as pathology at early 

stages or small lesions based on subtle grayscale differentiation. 

Figure 6-32 The Impact of the CAE on the JSRT Dataset: Representative Samples 

Finally, the solution proposed had decent performance on the three sets of data in balancing 

compressed image quality and data compression, preserving vital information, and at the same 

time, presenting an efficient avenue through which medical images could be transmitted and 

stored. The performance of compression for the OPEN-I dataset outperformed the performance 

of the MXID and JSRT datasets.  

 

Table 6-20 Assessment of the CAE on the MXID, JSRT, and OPEN-I datasets  

Datasets Epochs MSE 
PSNR 

(dB) 
MS-SSIM 

MXID dataset 94 0.00008 47.318 0.997 

JSRT dataset 45 0.00013 47.109 0.997 

OPEN-I dataset 58 0.00004 47.528 0.998 

Original image Reconstructed image Original image  
Reconstructed image 
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6.4.2.4.3 Experiment with run-length encoding (RLE) 

Run-Length Encoding (RLE) compression of Open-I, JSRT, and MXID datasets 

compressed the image size without sacrificing on the visual quality of the image as observed 

from Figure 6-33. This makes RLE an appropriate method for storage and transmission of 

medical images with good balance between the image compression ratio and reconstruction. 

For the MXID dataset, compression was specified as loss of quality that was imperceptible, 

with best trade-off between image fidelity and size reduction. For Open-I and JSRT datasets, 

RLE showed good performance in preserving salient features of the datasets, i.e., pixel 

intensity change. Reconstructed images were similar to the original images without loss of 

quality. These values achieved—PSNR: "inf" dB, MS-SSIM: 1.0, and MSE: 0.0—all verify 

that RLE is maintaining ideal structure features. These are all suggestive of how much it can 

be trusted as a lossless compression method, particularly for medical X-ray images with pixel 

repetition patterns. 
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Figure 6-33  Illustrative example of the impact of RLE on MXID, OPEN-I, and JSRT datasets 

 

6.4.2.4.4 Comparative Study Evaluation 

The proposed CAE model exhibits improved performance on the OPEN-I dataset with 

maximum PSNR and MS-SSIM and minimum MSE than that of the JSRT dataset, which 

exhibited smaller values and weaker compression. The model also preserves notable fine 

details in 18 anatomical areas well, ensuring robust performance depending on dataset 
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characteristics. Table 6-21 contrasts sample images from the MXID, OPEN-I, and JSRT 

datasets with four being selected from each, as shown in Figure 6-19, Figure 6-30, and Figure 

6-32, respectively. The OPEN-I dataset was consistently better with higher PSNR values and 

lower MSE. Comparing RLE and CAE compression techniques from the three datasets showed 

that CAE compressed image size better. This is characteristic of the autoencoder's capacity to 

learn compact latent representations, effectively reducing image dimensionality without 

sacrificing the important structural information. 

 

Table 6-21 Performance Assessment of the Proposed Autoencoder and RLE on grayscale samples 

with normalized size of 256 x 256 from the three datasets, using PSNR, MSE, and MS-SSIM 

metrics for a precise evaluation 

Dataset Images samples 

CAE RLE 

PSNR 

(dB) 
MSE 

MS-

SSIM 

PSNR 

(dB) 

MSE MS-

SSIM 

M
X

ID
 D

a
ta

se
t 

Image 1 

‘P00001_18-

01_0_00001.png’ 

47.113 0.00013 0.995 Inf dB 0.0 1.0 

Image 2 

‘P00006_02-

01_0_00007.png’ 

47.061 0.00015 0.997 Inf dB 0.0 1.0 

Image 3 

‘P00007_17-

02_0_00009.png’ 

46.931 0.00019 0.997 Inf dB 0.0 1.0 

Image 4 

‘P00009_08-

03_1_00012.png’ 

47.129 0.00013 0.994 Inf dB 0.0 1.0 

O
P

E
N

I 
D

a
ta

se
t 

Image 1 

‘CXR1000_IM-0003-

1001.png’ 

47.50 0.000051 0.998 Inf dB 0.0 1.0 

Image 2 

‘CXR1005_IM-0006-

1001.png’ 

47.30 0.000091 0.997 Inf dB 0.0 1.0 

Image 3 

‘CXR1007_IM-0008-

3001.png’ 

47.52 0.000049 0.998 Inf dB 0.0 1.0 

Image 4 

‘CXR1008_IM-0009-

4004.png’ 

47.15 0.00012 0.997 Inf dB 0.0 1.0 

J
S

R
T

 D
a

ta
se

t 

Image 1 

‘JPCLN001.png’ 
46.73 0.00025 0.990 Inf dB 0.0 1.0 

Image 2 

‘JPCLN003.png’ 
46.99 0.00017 0.992 Inf dB 0.0 1.0 

Image 3 

‘JPCLN004.png’ 
46.68 0.00027 0.990 Inf dB 0.0 1.0 

Image 4 

‘JPCLN006.png’ 
46.84 0.00021 0.992 Inf dB 0.0 1.0 
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On the other hand, RLE is not superior to CAE, with only moderate compression, as seen 

from Table 6-22. For example, image 'P00001_18-01_0_00001.png' in MXID dataset was 

originally 262,144 bytes, and encoded size is 131,072 bytes. After the application of RLE 

compression, file size was 209,540 bytes, showing the ability of RLE in encoding redundancy 

but without reducing the file size much. Nevertheless, RLE also maintains some anatomy 

information better, as indicated by Figure 6-33. It is because the complexity and diversity 

coping incapability of RLE in X-ray medical images, and CAE with enhanced feature 

extraction and dimension reduction. 

CAE outperformed RLE greatly in terms of compression ratio since it did an optimal 

minimization of image size. Table 6-22 is evidence that the 'CXR1000_IM-0003-1001.png' 

image of the OPEN-I dataset was subjected to an RLE compression ratio of 1.10, while its 

CAE-coded counterpart had a CR of 2.0. That indicates that CAE can do file size minimization 

well without sacrificing useful image features needed for proper medical diagnosis. 

 

Table 6-22 Comparison of the original image size, CAE encoded image size, RLE Encoded image 

size, and compression ratio’s values four samples from the three different datasets 

Original Image Size (4 * 256 *256 * 1) Bytes = 262144 Bytes 

Encoded Images Size = 131072 Bytes 

CR = 2.0 

IMAGES’ DATASET 

SAMPLES 

RLE Encoded 

Image Size (Bytes) 

CR - RLE 

Encoded Image 

MXID Dataset 

Image 1 

‘P00001_18-01_0_00001.png’ 
209540 1.25 

Image 2 

‘P00006_02-01_0_00007.png’ 
170388 1.53 

Image 3 

‘P00007_17-02_0_00009.png’ 
151224 1.73 

Image 4 

‘P00009_08-03_1_00012.png’ 
204188 1.28 

OPENI Dataset 

Image 1 238220 1.10 
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‘CXR1000_IM-0003-1001.png’ 

Image 2 

‘CXR1005_IM-0006-1001.png’ 
254512 1.03 

Image 3 

‘CXR1007_IM-0008-3001.png’ 
246752 1.06 

Image 4 

‘CXR1008_IM-0009-4004.png’ 
253452 1.03 

JSRT Dataset 

Image 1 

‘JPCLN001.png’ 
251056 1.04 

Image 2 

‘JPCLN003.png’ 
249240 1.05 

Image 3 

‘JPCLN004.png’ 
249948 1.05 

Image 4 

‘JPCLN006.png’ 
245144 1.07 

 

6.4.2.5 Experiment Based on LAVIA-MXID Dataset 

9,989 images from the suggested LAVIA-MXID dataset in PNG (256x256 pixels) were 

employed to test the compression methods. Due to limited GPU memory, a batch size of four 

was used and images were normalized to a pixel value range of [0, 1]. Several deep learning 

techniques were attempted, including deep learning-based autoencoders, and the performance 

of these techniques was evaluated using the aforementioned metrics, and the findings are 

summarized in Table 6-23: 

 

Table 6-23Result of handcrafted machine learning and deep learning method for image compession using 

our LAVIA MXID dataset compared to MXID dataset 

Methods Parameters 

MXID dataset LAVIA MXID dataset 

MSE PSNR 
MS-

SSIM 

Parameters 
MSE PSNR 

MS-
SSIM 

AE Epochs =35 0.014 37.61 0.61 
Epochs = 48 

0.012 38.38 0.63 

VAE Epochs =25 - 21.64 0.75 Epochs = 29 - 21.00 0.73 

CNN Epochs =21 0.006 41.43 0.77 Epochs = 35 0.006 41.00 0.74 

DCAE Epochs =30 0.0002 46.78 0.99 
Epochs = 74 

0.0001 47.00 0.99 
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The comparison of outputs for various epochs for models AE, VAE, CNN, and DCAE on 

MXID version 1 and version 2 identifies improvement with the new LAVIA-MXID dataset to 

some degree by providing better-quality images and minimal reconstruction artifacts. The 

comparisons bellow draws the discussion of the models on the MSE, PSNR, and MS-SSIM 

parameters as well as between the versions of datasets and the performance of models. 

6.4.2.5.1 Comparisons by Models 

For Autoencoder (AE), the accuracy increased from the MXID to LAVIA-MXID dataset, 

but AE was not good with complex feature extraction against the DCAE model. The DCAE 

model, due to its deep architecture benefit, achieved better PSNR and MS-SSIM performance 

with the LAVIA-MXID dataset. For CNN model, it was comparatively good with MSE and 

PSNR but needed to be better with feature extraction and classification tasks. The VAE, with 

good performance in probabilistic modeling, demonstrated good performance in PSNR and 

MS-SSIM with some artifacts due to the stochastic behavior of the model. 

6.4.2.5.2 Comparisons by Dataset’s Version 

The larger LAVIA-MXID dataset provided more diverse samples, resulting in better 

generalization on all the metrics. Still, the small improvements in CNN and VAE indicate that 

dataset version 1 might have been representative enough for these models. On the other hand, 

AE and DCAE had marginal but consistent improvement on all metrics with the LAVIA-

MXID dataset. The slow progress in CNN and VAE implies possible structural limitations or 

trivial performance gains notwithstanding the bigger dataset. 

 

6.5 Comparison with Related Works in The Literature  

Table 6-24 presents a comparative study of some of the most advanced image compression 

techniques in terms of Peak Signal-to-Noise Ratio (PSNR) and Multi-Scale Structural 

Similarity Index Measure (MS-SSIM). These indices are important in quantifying the quality 

and fidelity of visually reconstructed images in lossy compression systems. 

As can be seen from the results, the Proposed Convolutional Autoencoder (CAE) and its 

variants surpass most of the current methods in PSNR and MS-SSIM. Particularly, the 

Proposed Convolutional Autoencoder had a PSNR of 47.31 dB and MS-SSIM of 0.99, which 

is the highest performance among all compared methods. 

Among the earlier approaches, the Op-CNN [51] was the earlier best PSNR of 45.50 dB and 

other techniques like Convolutional Neural Networks with Wavelet Transformation [52] also 

exhibited strong performance (PSNR = 39.59 dB), but without MS-SSIM reporting. Lossy 
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Compression based Autoencoder  [48] and End-to-End VAE [50] demonstrated relatively high 

MS-SSIM values (0.97) but also their PSNR values were significantly lower than those of the 

proposed methods. 

Surprisingly, while some models such as the Compression and Denoising Autoencoder [46] or 

Lossy Compression Based-CNN [54] focused on visual resemblance (MS-SSIM of 0.92 and 

0.87, respectively), they sacrificed reconstruction precision, as revealed by their low PSNR 

values (23.91 dB and 25.65 dB). In contrast, AE-DBM [47] had relatively equal performance 

with 37.02 dB PSNR and 0.99 MS-SSIM, but nonetheless lagged behind the introduced DCAE 

models. The three models proposed — Deep Convolutional Autoencoder Based ReLU, 

PReLU, and the final Proposed Convolutional Autoencoder — all performed better than 

previous models on both objective scores. The ReLU-based model achieved 46.37 dB / 0.98, 

the PReLU-based model slightly better at 46.78 dB / 0.99, and the final model peaked at 47.31 

dB / 0.99. This indicates the effectiveness of the proposed architectural improvements and 

activation function modifications. 

 

In  [57], authors applied our proposed DCAE model and other models on the different medical 

imaging modalities, then comparing the results of each with their results of the proposed 

Quantum-enhanced Artificial Neural Network (QAAN) model achieving a high average PSNR 

values (ranging from 43.51 dB to 46.29 dB). Results were very close for each model, the 

difference in ∆ value is minor when DCAE is compared with the other current 

methods and QANN method. While our proposed CAE outperformed all the models in the 

literature with a PSNR value of 47.31 dB.  

 
Table 6-24 Comparative Analysis of PSNR and MS-SSIM Values across Various State-of-the-Art Image 

Compression Techniques [29] 

Technique 
PSNR Values 

(dB) 
MS-SSIM 

Lossy Compression based Autoencoder [48] 35.91 0.97 

Deep Autoencoder with Deep Bolzmann Machines (AE-DBM) 

[47] 
37.02 0.99 

Compression and Denoising Autoencoder [46] 23.91 0.92 

Proposed Autoencoder [29] 37.61 0.61 

Convolutional Neural Networks and Wavelet Transformation 

[52] 
39.59 - 
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Optimized Convolutional Neural Network (Op-CNN) [51] 45.50 - 

Proposed CNN  41.43 0.77 

End-to-End compression-based VAE [50] 32.43 0.97 

Integration of Residual Networks and Variational Autoencoder 

[49] 
Higher PSNRand MS-SSIM than Ballé 

Variational Autoencoder [29] 21.64 0.75 

Lossy Compression Based-Convolutional Neural Network [54] 25.65 0.87 

Convolutional Autoencoder Neural networks (CAE-NN) [53] - - 

Convolutional Autoencoder (CAE) [55] 26.48 0.82 

a Quantum-enhanced Artificial Neural Network model for 

Efficient Medical Image Compression [57] 
43.51 to 46.29 0.99 

Proposed Deep Convolutional Autoencoder Based ReLU [29] 46.37 0.98 

Proposed Deep Convolutional Autoencoder Based PReLU 

[29] 
46.78 0.99 

Proposed Convolutional Autoencoder 47.31 0.99 

 

6.6 Conclusion 

In this chapter, a series of experiments and findings of machine learning and deep learning-

based compression techniques on medical X-ray images, the findings demonstrated the 

effectiveness of the models in striking a balance between storage and diagnostic quality 

preservation. Also, the LAVIA-MXID dataset, intended for different applications, such as 

image compression, and proves the success of machine learning and deep learning models such 

as the Deep Convolutional Autoencoder (DCAE) in achieving higher compression quality. The 

findings were analyzed to compare different architectures based on their strength and 

weaknesses, and identifying optimum configurations for medical image compression. Besides, 

the comparison with existing approaches provided a sense of the advantages and drawbacks of 

deep learning-based solutions. Some trade-offs between compression ratio, image quality, and 

computational complexity are nevertheless still open to be explored. The potential future 

directions for the development of medical imaging compression techniques, we are attempting 

to apply a Generative Adversarial Network (GAN) which would require some more time, we 

will complete it shortly.  
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GENERAL CONCLUSION AND PERSPECTIVES  

 

he growing volume of high-quality medical images is presenting enormous challenges in 

terms of processing, transmission, and storage. Traditional techniques of compression, 

although adequate for the majority of instances of general image compression, are not up to the 

mark for medical images, as they are not designed to consider the unique structural features on 

which diagnostic dependability rests. It therefore becomes increasingly evident that new, 

advanced methods of compression must be explored in new health systems. 

With the use of deep learning methods such as Autoencoders (AE), Deep Convolutional 

Autoencoders (DCAE), Convolutional Neural Networks (CNNs), and Variational 

Autoencoders (VAEs), this study has been conducted on machine learning and deep learning-

based methodology in addressing problems with compressing medical X-ray images. It has also 

demonstrated the ability of such new methods to not just boost compression ratios but keep 

intact the fundamental structural information essential for accurate diagnosis. Research into 

traditional machine learning algorithms like Principal Component Analysis (PCA) and K-

means clustering. 

The research introduced the Medical X-ray Imaging Dataset (MXID), a large and high-quality 

dataset of 6,869 X-ray images collected at AOUINET Hospital, Tebessa, Algeria. This 18-

region anatomical data set with varying body part and gender splits is a valuable resource for a 

wide range of image processing tasks such as image classification, image segmentation, image 

detection, image compression, and so on. MXID dataset is the yardstick by which future 

comparative medical image compression, classification, and machine learning research will be 

compared, illustrating the potential offered by high quality representative data sets in 

facilitating medical imaging innovation. 

The findings of the study confirm that deep learning-based models, particularly DCAEs and 

CAEs, are better than other compression algorithms in terms of image compression efficiency 

and image quality retention. Deep learning models performed better on PSNR and SSIM, and 

findings confirm that high-quality feature preservation of medical images is preserved. 

However, even as positive progress is observed, there remain issues in preserving high fidelity 

of intricate anatomical structures of utmost relevance to clinical diagnosis, especially in highly 

detailed feature images such as bones, tissues, and organs. 

T 
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Second, this study also demonstrates the importance of high quality and diverse dataset during 

training and testing of deep learning models.  The MXID dataset provides not only good-quality 

images but also correct annotations, which enhances the performance and accuracy of 

compression models. 

Despite the advancements triggered, there are some points left to explore in the future. 

Progressing the structure of models, optimizing loss functions, and including post-processing 

and pre-processing techniques, such as in the hybrid AE-RLE model incorporating the RLE, 

can further enhance compressed medical image quality. 

In general, this work has a significant implication for image compression in medicine using 

deep learning with better compression ratios and preservation of image quality compared to 

traditional schemes. The study shows the potential of deep learning to transform the 

management of medical data such that storage, transmission, and access to critical healthcare 

information is more efficient. With increased popularity of medical imaging and healthcare 

system development, future development can be based on generative methods (GANs) and the 

MXID dataset, which can lead to improved healthcare in the context of quicker and more 

accurate diagnosis, reduced storage cost, and improved overall management of medical images 

within clinical settings.
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